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Abstract. When animals (including humans) first explore a new en-
vironment, what they remember is fragmentary knowledge about the
places visited. Yet, they have to use such fragmentary knowledge to find
their way home. Humans naturally use more powerful heuristics while
lower animals have shown to develop a variety of methods that tend to
utilize two key pieces of information, namely distance and orientation
information. Their methods differ depending on how they sense their
environment. Could a mobile robot be used to investigate the nature of
such a process, commonly referred to in the psychological literature as
cognitive mapping? What might be computed in the initial explorations
and how is the resulting “cognitive map” be used for localization? In
this paper, we present an approach using a mobile robot to generate
a “cognitive map”, the main focus being on experiments conducted in
large spaces that the robot cannot apprehend at once due to the very
limited range of its sensors. The robot computes a “cognitive map” and
uses distance and orientation information for localization.

1 Introduction

Since Tolman [1] suggested that animals (including humans) create a represen-
tation of the environment in their minds and referred to it as a “cognitive map”,
many psychological experiments have been conducted to study the nature of
cognitive maps (see [2] for a review). Some of the important characteristics of
cognitive maps highlighted by these studies include distorted information about
distances and directions, landmarks, places, and paths, a hierarchical organiza-
tion as well as multiple frames of reference. Many models of cognitive maps have
also been proposed and one idea appears to be most prominent, namely that
the map begins with some form of a network of “place representations”. Several
computational theories of cognitive mapping have been published since then,
including the works of Poucet [3], Chown, Kaplan and Kortenkamp [4], Kuipers
[5], and Yeap and Jefferies [6].

More recently, researchers began to use mobile robots to test ideas about cog-
nitive mapping as opposed to robot mapping. In robot mapping, one is concerned
with the development of efficient algorithms for the robot, with its particular



sensors, to simultaneously localize and map its environment (SLAM). For some
examples of recent work in this area see [7] and the references therein. The maps
acquired via this paradigm are precise. By “precise”, we refer to the fact that
every surface the robot encounters is remembered and its position is known with
a certain degree of accuracy. The robot also knows its position in the environ-
ment. In contrast, the mapping process used by humans (and animals), referred
to as cognitive mapping, produces an imprecise map initially, which later turns
into a representation laden with one’s own interpretations and experiences of
the world. The map produced in such a process is known as a cognitive map.

For example, Kuipers and his team have been experimenting with robots to
find ways to compute his Spatial Semantic Hierarchy from the ground up [8].
Both the gateway construct in the PLAN model of cognitive mapping [4] and
the use of exits in the Absolute Space Representation (ASR) model of cognitive
mapping [6] were tested on a mobile robot: refer to [9] for the former and to
[10] for the latter. Also, ideas about cognitive mapping based upon neurological
findings were being tested using mobile robots. Examples of such work include
[11, 12]. However, many of these attempts produced algorithms that were more
an inspiration from observations about cognitive mapping than a test-bed for
theories of cognitive mapping. These researchers were concerned on their robots
successfully mapping their environments. Hence, instead of investigating cogni-
tive mapping, they ended up trying to solve the robot mapping problem.

Our goal in this paper differs. Different animals compute cognitive maps
using different sensors, and therefore our robot should be treated as a kind of
animal with its own peculiar sensing capabilities. For unknown reasons, humans
do not remember a precise map after one or two visits to a new environment.
We assume animals do not too, and so neither should our robot. To investigate
our robot’s cognitive mapping process, it is thus best to have our robot compute
an imprecise map first and then investigate animal-like strategies for finding its
way home using such a map. It is argued that the behavior of such a robot
might shed light on cognitive mapping. Refer to [13] for a review on biological
navigation approaches implemented on robots.

To do so, we use a robot equipped with sonar sensors to compute a description
of each local space visited. The robot’s “cognitive map”3 is thus a network of
such local spaces. Following the theory of cognitive mapping as presented in [6],
we refer to each local spaces computed as an Absolute Space Representation
(ASR). With sonar sensors, the description of each ASR computed (or more
precisely, the shape computed) is not accurate enough to allow its identification
on its return journey, even more so in large environments. As lower animals
(especially rats) have been observed to use distance and direction information
encoded in their cognitive map to find their way [14], we implemented similar
strategies for the robot.

3 by definition, a robot cannot have a cognitive map. However, rather than being
verbose and say “using a robot to simulate computing a cognitive map”, we will
simply say the robot computes a cognitive map.



The algorithms presented here are based on our previous work on robot and
cognitive mapping [15–17]. They have been considerably extended to be able to
cope with “large” spaces (for a robot with sonar sensors), and new experimental
results are shown here. The spaces considered are too large for the robot to be
apprehended at once due to the limited range of its sonar sensors.

Section 2 describes the way our robot computes its “cognitive map”. Sec-
tion 3 presents the two strategies that our robot uses to localize itself in the
environment. Section 4 shows the results of our experiments, the main focus
being on large spaces.

2 Generating an Absolute Space Representation

When exploring the environment for the first time, the robot creates a “cognitive
map” of its environment, i. e., a network of local spaces visited, namely ASRs.
The process of generating this topological space representation from sonar infor-
mation gathered while mapping the environment is described in the following.

For mapping, we use a mobile robot equipped with eight sonar sensors and
an odometer. The robot acquires sonar readings while moving on a “straight”
line (we are not concerned about drift compensation or correction) until it runs
into an obstacle. At this point an obstacle avoidance algorithm is used, after
which the robot can wander straight on again. A single one of these straight
movements will be called robot path throughout this paper. The starting point
of the algorithm is a geometric map that contains the robot movement path as
well as linear4 approximations of surfaces generated from the original range data.
The goal is to split the map into distinct regions, e. g., corridors and rooms. One
of the main problems at this stage is that the range of the sonar sensors (for our
robot about 4m) is not sufficient for apprehending large rooms at once with range
data acquired from a single position. Therefore, the robot has to travel through
the environment, which results in distorted maps due to odometry errors. The
algorithm presented here is capable of handling these problems, as will be shown
in the experiments’ section.

Splitting is done along the robot movement path, using an objective function
that computes the quality of a region, based on local metric features derived
from the geometric map, such as the average room width (corridors are long and
narrow compared to rooms) and overall direction (e. g., a corridor is separated
from another one by a sharp bend in the wall). No fixed thresholds are used, so
the algorithm can balance the influence of the separate criteria used as needed.

2.1 Split and Merge

The basis of the ASR generating algorithm is the well-known split and merge
method [18–20], which originated in pattern recognition. A classic application

4 this is not mandatory; any approximation will be fine as long as the total area of a
region can be computed



of this algorithm is finding piecewise linear approximations of contour points
that have been detected in an image. A variety of other applications has been
proposed, including segmentation of image regions given a homogeneity criterion,
e. g., with respect to color or texture [20]. The split and merge algorithm is the
core part of the process resulting in a topological ASR representation of the
environment. Therefore, it is described here, based on the classic version for
contour approximation.

The input data of split and merge is a sorted set of (contour) points, which
is to be approximated. A parametric family of functions F (e. g., lines) to be
used has to be chosen, as well as a metric for computing the residual error ǫ of
the resulting approximation (usually root mean square error), or, when used for
regions, a homogeneity or quality criterion. The algorithm results in a piecewise
approximation of the original points, where every single residual error is below
a given threshold θs. The single steps of the algorithm are [20]:

1. Start with an initial set of points P0 consisting of n0 parts P0
0 , . . . ,P0

n0−1.
Each part P0

i is approximated by a function from F . Compute the initial
residual error ǫ0i for each part of P0.

2. Split each Pk
i where ǫk

i > θs into two parts Pk+1
j and Pk+1

j+1 , compute the

approximation and residuals ǫk+1
j , ǫk+1

j+1 . Repeat until ǫk
i ≤ θs ∀i

3. Merge two adjacent parts Pk
i , Pk

i+1 into one new part Pk+1
j if ǫk+1

j ≤ θs.
Repeat until merging is not possible any more.

4. Shift the split point shared by two adjacent parts Pk
i , Pk

i+1 to left and right
while leaving the overall number of parts fixed. Keep the split that reduces
the overall error, repeat until no further changes occur.

2.2 Region Splitting of the Map

Before a region split and merge algorithm on the geometric map can be applied,
it is necessary to create an initial split of the map. The easiest way to do so is to
treat the whole map as a single large region defined by the start and end points
of the journey. More sophisticated initializations can be used as well, e. g., based
solely on the robot movement without taking into account range data [15].

After the initialization step, the actual division of the map into distinct
regions is performed based on a split and merge that uses a residual error function
h(Pi,Pj) which compares two regions Pi and Pj and computes the homogeneity
of the two regions (low values of h(Pi,Pj) means homogeneous, high values
very inhomogeneous). This function is used during the split phase for deciding
whether a region Pk

i will be split again at a given position into two new regions
Pk+1

j and Pk+1
j+1 , and in the merge (or shift) phase to determine whether two

adjacent regions can be merged (or the splitting point be shifted). When the
homogeneity is above a given threshold θr, the region will be split again.

The basic idea is to use the average width of a region in the map as a
criterion for splitting, as a width change resembles a changing environment,
e. g., a transition from a corridor to a big room. The homogeneity (residual)



function used is:

h(Pi,Pj) =
max{fw(Pi), fw(Pj)}

min{fw(Pi), fw(Pj)}
+ srr(Pi,Pj) , (1)

where fw(Pi) is the average width of region Pi, and r(Pi,Pj) is a regularization
term that takes care of additional constraints during splitting. The factor sr

controls the influence of r(Pi,Pj).

Obviously, the average width is given by fw(Pi) =
APi

lPi

, where APi
is the

area of region Pi, and lPi
is its length. The definition of the length of a region in

particular is not always obvious, but can be handled using the robot movement
paths, which are part of each region. The length lPi

is then defined by the length
of the line connecting the start point of the first robot path of a region and the
end point of the last path of the region, i. e., the line connecting the exits of
an ASR, which the robot used while travelling through the environment. This
is an approximation of a region’s length having the advantage that disturbance
caused by zig-zag movement of the robot during mapping does not affect the
end result.

For area computation, the gaps contained in the map have to be taken into
account, either by closing all gaps, or by using a fixed maximum distance for
gaps. Closing a gap is a good approach if it originated from missing sensor
data, but may distort the splitting result when the gap is an actual part of the
environment. Closing it would make the region appear smaller than it actually
is. Our implementation uses a combination of methods: small gaps are closed in
a pre-processing step, large ones are treated as distant surfaces.

Depending on how gaps are handled, the algorithm possibly creates a large
number of very small regions. This is where the regularization term r(Pi,Pj)
comes in: it ensures that regions do not get too small. It penalizes small regions
but still allows to create them if the overall quality is very good. We use a sigmoid
function centered at n, which is the desired minimum size of a region:

r(Pi,Pj) =
1

1 + exp
(

−
min{APi

,APj
}

Amax

+ n
) − 1 . (2)

This function can assume values values between −1 and 0. The exponent is
basically the ratio of the area of the smaller one of two adjacent regions to the
maximum area Amax of the smallest possible region that the algorithm is still
allowed to create. Thus, the smallest ratio is 1. It increases when the region gets
larger.

The regularization term only has an influence when a region is already small,
making it less likely to be split again. As the sigmoid reaches 0 asymptotically,
it has virtually no influence when a region is large. The overall influence of the
regularization can be controlled by the factor sr in (1). It is given by sr = sθr,
where 0 ≤ s ≤ 1 is set manually and defines the percentage of the threshold
θr that is to be used as a weight. θr is the threshold introduced earlier, which
determines that a region is to be split into two when the first region is θr times
larger than the second one.



3 Localization Strategies

In this section we describe the strategies used for localization based on ASR
information, which is extracted from two sources, namely a map that has been
generated on the outward journey, i. e., while the robot was exploring the en-
vironment, and a second map which is being generated during the homeward
journey. A data fusion algorithm is applied for merging localization information
computed by separate simple strategies with varying reliability. Each strategy
by itself may be not sufficient for the robot to localize itself in the environment,
but the combined result is. The fusion is based on the Democratic Integration

technique proposed by Triesch and von der Malsburg [21, 22]. Originally it was
developed for the sensor data fusion in computer vision, and uses images as
input data. The method has been extended and embedded into a probabilistic
framework in [23, 24], still within the area of machine vision. We have amended
the original approach such that instead of images, information extracted from
the ASRs is used. A main advantage of the fusion approach is that the extension
is straightforward, i. e., more localization strategies can be added easily.

Two different strategies for localization of the robot with respect to the origi-
nal map generated on its way to the current position are presented in the follow-
ing. Each method computes a local confidence map that contains a confidence
value between zero and one for each ASR of the original map. Note that these
confidence values are not probabilities, and they do not sum up to one; the in-
terval has been chosen for convenience, and different intervals can be used as
desired. Refer to [21, 22] for further details regarding this matter.

As the “cognitive maps” generated are a topological representation enhanced
by metric information, there is no need to correct them for odometry drift. It is
important to keep this in mind when developing new localization strategies: it
necessitates the use of local information only, i. e., information extracted from
adjacent ASRs, or information that can be computed without having to worry
about any negative influence originating from odometry errors.

3.1 Distance

Just as humans have a rough notion of how far they walked starting at a certain
location, so should a robot. Note that we are not talking about exact measure-
ments, but rather about whether the robot has travelled, say, 5m or 10m. Also,
we do not use the actual distance travelled as provided by odometry, because the
robot often moves in a zig-zag fashion rather than straight, which would result
in quite different distances for each journey through the same space. Particularly
for large spaces, the odometry readings also depend highly on which path the
robot actually took when crossing empty space, and whether it has explored the
space wandering around multiple times before exiting. Our proposed solution for
this problem is to use distance information obtained from the “cognitive maps”
computed during outward and homeward journeys. These maps have been split
into distinct ASRs, and the length of each ASR can be computed, which is de-
fined by the distance between the entrance and the exit the robot used when



passing through (cf. Sect. 2.2). In the maps shown, e. g., in Fig. 1, start and
end points of an ASR are depicted by dark dots (split points) located on a set
of connected lines representing the path the robot took. The zig-zag movement
of the robot in between two splits is clearly visible, and can be quite different
from the line connecting start and end points, in particular if an ASR has been
generated from a large empty space. The strategy for computing a local confi-
dence map that can later on be used for data fusion, is to compare the distance
d travelled when returning home, measured in ASR lengths taken from the in-
termediate map computed on the return journey, to the ASR lengths taken from
the original map computed during the mapping process.

The local confidence map cDist ∈ IRN (N being the total number of ASRs in
the original map) is computed as follows: Each ASR’s confidence is dependent on
the overall distance d travelled on the return journey; the closer an ASR is to this
distance from the origin, the more likely it is the one the robot is in currently. To
model the confidences for each ASR we use a Gaussian, the horizontal axis being
the distance travelled in mm, centered at the current overall distance travelled d.
Its standard deviation σ is dependent on the distance travelled, and was chosen
as σ = 0.05d. Note that although a Gaussian is used here, we do not try to model
a probability density function, but rather make use of the bell-shape it provides.
There are a number of reasons making it most suitable for our purpose: It allows
for a smooth transition between ASRs, and the width can be easily adjusted by
altering the standard deviation. This is necessary as the overall distance travelled
gets more and more unreliable (due to slippage and drift) the further the robot
travels.

The confidence value for a particular ASR is determined by sampling the
Gaussian at the position given by the accumulated (ASR-)distances from the
origin (i. e., where the robot started the homeward journey) to the end of this
ASR. After a value for each ASR is computed, the local confidence map cDist is
normalized to the interval [0; 1].

3.2 Relative Orientation

The second method for computing local confidence maps containing estimates of
the robot’s position with respect to the original map is based on using relative
orientation information between adjacent ASRs. During its journey, the robot
enters an ASR at one location and exits at a different one, usually including zig-
zag movements in between. We define the direction of an ASR as the direction of
the line connecting the entrance and exit points. As before, direction information
varies every time the robot travels through the environment, but the overall
shape between adjacent ASRs is relatively stable. Therefore, we propose to use
angles between ASR directions as a local measure of the current position of the
robot. Note that this information is pretty much useless on its own, because the
same angles (i. e., direction changes) can be found in different locations of the
environment. However, combining this strategy with others can help to decide
between position estimates that would otherwise be indistinguishable.



Firstly, all angles α1, . . . , αN−1 between adjacent ASRs in the original map
are computed. This can be done offline, as this map is fixed during the home-
ward journey. In the re-mapping process while returning home, new ASRs are
computed in the new map based on data gathered while the robot travels. Using
the direction information contained in this map, the angle β between the current
ASR and the previous one can be computed. Comparing this angle to all angles
of the original map gives a clue (or multiple clues) for the current location of
the robot.

The comparison of angles is done by computing the difference angle between
the current angle β obtained from the newly generated map and all angles αi of
the original map. This difference angle is then mapped linearly to the interval
[0; 1]:

cDiri = −
1

π
|αi − β| + 1, i = 1, . . . , N − 1 . (3)

Another obvious choice would be to use the cosine of the difference angle instead
of the linear mapping. However, this would “compress” confidence values for
similar angles, which is not a desired effect.

The mapping given by (3) results in high values for similar angles and low
values for dissimilar ones. The confidence map computed this way can already be
used for further processing. Since the overall reliability of the relative orientation
strategy as described above is rather low compared to the confidence values from
other methods (in this case using distance information), we currently reduce the
confidence values by a constant factor. As the data fusion method presented
in the next section is capable of adjusting the relative weights of the different
localization strategies, this is non-critical, because it will change automatically
over time anyway, depending on the reliability of the other methods used.

3.3 Fusion of Strategies

The separate local confidence maps are merged into a single global one based
on the Democratic Integration method proposed in [21, 22]. Fusion itself is done
by computing a weighted sum of all local confidence maps, which is straightfor-
ward and not a new concept. However, Democratic Integration allows for the
weights to be adjusted dynamically and automatically over time, dependent on
the reliabilities of the local map.

Given M local confidence maps cli(t) at time t generated using different
strategies, the global map cg(t) is computed as:

cg(t) =
M−1
∑

i=0

wi(t)cli(t) , (4)

where wi(t) are weighting factors that add up to one. In this paper, M = 2,
namely the local confidence maps based on distance (cDist) and relative orien-
tation (cDir).

An estimate of the current position of the robot with respect to the original
map can now be computed by determining the largest confidence value in cg(t).



Its position b in cg(t) is the index of the ASR that the robot believes it is in. The
confidence value cgb

at that index gives an impression about how reliable the
position estimate is in absolute terms, while comparing it to other ASRs shows
the relative reliability.

In order to update the weighting factors, the local confidence maps have to
be normalized first. The normalized map c

′
li
(t) is given by:

c
′
li(t) =

1

N
cli(t) . (5)

Recall that N is the total number of ASRs in the original map. The idea when
updating the weights is that local confidence maps that provide very reliable
data get higher weights than those which are unreliable. Different ways for de-
termining the quality of each local confidence map are presented in [22]. We use
the normalized local confidence values at index b, which has been determined
from the global confidence map as described above, i. e., the quality qi(t) of each
local map cli(t) is given by c′lb(t). Normalized qualities q′i(t) are computed by:

q′i(t) =
qi(t)

∑M−1

j=0 qj(t)
. (6)

The new weighting factors wi(t + 1) can now be computed from the old ones:

wi(t + 1) = wi(t) +
1

t + 1
(q′i(t) − wi(t)) . (7)

This is a recursive formulation of the average over all qualities from time zero
to t. Using this update equation and the normalization of the qualities in (6)
ensures that the sum of the weights equals one at all times.

4 Experimental Results

For experimental evaluation we have used a Pioneer 3 robot from MobileRobots
Inc (formerly Activmedia Robotics), equipped with eight sonar sensors and an
odometer. Using sonar sensors only instead of, say, a laser range finder was a de-
liberate choice, as the restrictions imposed by the limited range of sonar sensors
allow us to better test the cognitive mapping algorithms and the behaviour of the
robot in large spaces. The robot must first explore and generate a representation
of the environment, i. e., a “cognitive map”. This is called the “outward journey”
further on, the map is called “original map”. At some point the robot is stopped
and turned around. On its way back home (the “homeward journey”) it remaps
the environment and computes a new “cognitive map”, which is used in con-
junction with the original map for localization. Computation of the “cognitive
map” and localization is done each time the robot stops, which is normally due
to an obstacle in its way. Note that we turn off the robot and change its position
slightly before it is allowed to start the remapping process. Therefore, the maps
generated during the outward and homeward journeys are recorded in different



global coordinate systems, and the robot has no way of aligning them. In the
following we show experimental results for generating the spatial representation
of the environment based on the split and merge method presented in Sect. 2,
as well as experiments on how the robot uses this inexact “cognitive map” for
localization on its way back home using the localization method from Sect. 3.
The parameters used for computing the maps were the same for all runs, namely
θr = 1.7 and s = 0.2.

The range of the sonar sensors is about 4m; consequently, spaces larger than
the sonar range cannot be apprehended with a single scan, but the robot has to
move in order to build a spatial representation of the environment. Remember
that the “cognitive map” is a metric-topological representation rather than a
purely metric one, and the data acquired during mapping is not corrected for
odometry errors. This is one of the main advantages of choosing a cognitive
mapping approach over more traditional robot mapping techniques like SLAM.
Obviously odometry errors will be visible in the generated maps, but as long the
algorithm is able to generate a single ASR as opposed to multiple ones from the
data acquired, say, in a large room, this does not pose a problem.

We conducted various experiments in an office environment that contains a
large room having dimensions of approximately 9m × 15m. In particular when
the robot is close to the center of this room, it does not obtain any sensor read-
ings. Depending on the angle of movement, this may even happen at positions
farther from the room center. Two experiments have been selected for a detailed
discussion in this paper. Each experiment consists of the original map generated
on the outward journey, and maps computed on the way back home as well as
confidence maps used for localization. The experiments are labelled Experiment

1 and Experiment 2, respectively.

Figures 1(a) and 2(a) show the layout of the environment used, the large
room being in the center of the building. The paths that the robot took during
mapping (solid line) and going home (dashed line) are both shown as well. For the
mapping stage, the robot started at the location marked by ‘X’ and was stopped
at a random position, turned around and started the homeward journey nearby
(marked by ‘O’). The return journey stopped when the robot believed that it
reached home, or, more precisely, the ASR that contains the start location ‘X’.
The ASRs generated during the outward journey are indicated by ellipses and
numbered from zero starting at the last ASR (so that during the homeward
journey ASRs are visited in ascending order).

The “cognitive map” generated during the outward journey in Experiment 1

is shown in Fig. 1(b), the map computed on the homeward journey in Fig. 1(c);
likewise for Experiment 2 in Figs. 2(b) and 2(c). Note that the paths the robot
took during outward and homeward journey are quite different, particularly
when it maps the big room. All units are given in millimeters, black dots indicate
the split points between ASRs. Due to the re-initialization of the robot before
returning home, the starting point for both, outward and homeward journeys, is
the origin of the coordinate system, which also results in the map depicted in Fig.
1(c) to be upside-down with respect to the map in Fig. 1(b). When comparing



(a) Actual floor plan Experiment 1
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Fig. 1. Experiment 1: (a) Map showing the actual layout of the building. The path the
robot took during the outward journey is shown as a solid line, with ‘X’ marking the
starting location. The dashed line visualizes the path for the homeward journey and
‘O’ marks its starting point. ASRs generated during the outward journey are indicated
by ellipses. The labels A - F indicate positions during the homeward journey referred to
in the text and in Fig. 3. (b) Map generated during outward journey (“original map”).
(c) Map generated during homeward journey.



(a) Actual floor plan Experiment 2
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Fig. 2. Experiment 2: (a) Map showing the actual layout of the building. The path the
robot took during the outward journey is shown as a solid line, with ‘X’ marking the
starting location. The dashed line visualizes the path for the homeward journey and
‘O’ marks its starting point. ASRs generated during the outward journey are indicated
by ellipses. The labels A - F indicate positions during the homeward journey referred to
in the text and in Fig. 4. (b) Map generated during outward journey (“original map”).
(c) Map generated during homeward journey.



the maps generated during both journeys, it becomes obvious that different
representations may be computed, in particular a different number of ASRs,
and splits generated at different locations. This is due to sensory inaccuracies,
but it does not pose a problem for the localization method we use. The position
of the robot is always given with respect to the ASR representation of the original
outward journey map. What can be clearly seen in all maps generated in both
experiments is that the algorithm is capable of representing the large room as
a single ASR, independent of the path that the robot took while mapping. The
split points are nicely located near the exits of the room, as desired. Apart from
that, the algorithm separates corridors from bigger rooms (e. g., ASR 1 and 2
in Fig. 2), and corridors from other corridors, most of the times at locations
where a human would do so as well. Although robots and humans generating
cognitive maps may not necessarily come up with alike representations due to
the “hardware” being quite different, this is a desired result as we try to simulate
a human cognitive mapping process.

We will now take a closer look at the (obviously incomplete) maps and lo-
calization information generated at intermediate stops during the homeward
journey. For this purpose we have selected graphs computed at six positions on
the homeward journey, which allow for interesting insights into how the local-
ization performs. These positions are marked by ‘*’ and labelled A - F in Fig.
1(a) (Experiment 1 ) and 2(a) (Experiment 2 ).

Figures 3(a) to 3(f) show intermediate maps generated at positions A - F in
Experiment 1 (cf. Fig. 1(a)). The corresponding confidence maps are depicted
in Figs. 3(g) to 3(l). In the confidence graphs, the light dotted line shows the
ASR estimate using the ASR length information (distance method) and the dark
dashed line depicts the ASR estimate using the angles between ASRs (relative
orientation method). The solid line is the overall estimate after fusion. The
horizontal axis corresponds to the index of the ASR, the vertical axis to the
confidence, which can have values between zero and one.

The confidence graph at position A in Fig. 3(g) shows a peak for the overall
confidence at ASR 1, signifying the robot is very confident of being in this
particular ASR. The same is true for the graph in Fig. 3(h) corresponding to
position B, where the robot has moved far into the big room in the center being
ASR 4. It can be seen that position C is close to the border between ASRs 4 and
5, which is reflected by high confidence values for both ASRs in the confidence
map in Fig. 3(i), where the robot gets more and more unsure about whether it
is still in the big room or whether it has entered the next region yet (ASR 5). As
it moves further away from the exit and back into the room, reaching position D
it is very confident again that it is still in ASR 4, not having actually exited the
big room (see Fig. 3(j)). Position E is close to where the robot has entered the
room, coming through ASR 3. Again, this can be observed in the confidences
plotted in Fig. 3(k), which shows that the robot is still quite confident of being in
ASR 4, but where the value for ASR 3 has increased considerably, i. e., the robot
“knows” that it is close to where it was when it entered the room. Finally, the
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Fig. 3. Experiment 1: (a) - (f) Maps at intermediate stops A - F (cf. Fig. 1(a)); (g)
- (l) Confidence maps corresponding to stops A - F: distance (light dotted), relative
orientation (dark dashed), and overall confidence (solid). Horizontal axis: ASR number;
vertical axis: confidence (0 to 1).
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Fig. 4. Experiment 2: (a) - (f) Maps at intermediate stops A - F (cf. Fig. 2(a)); (g)
- (l) Confidence maps corresponding to stops A - F: distance (light dotted), relative
orientation (dark dashed), and overall confidence (solid). Horizontal axis: ASR number;
vertical axis: confidence (0 to 1).



graph in Fig. 3(l) was generated at position F, which is at the border between
ASRs 6 and 7, reflected by high confidences for both.

Figures 4(a) to 4(f) show intermediate maps generated at positions A - F in
Experiment 2 ((cf. Fig. 2(a))), and the corresponding confidence maps in Figs.
4(g) to 4(l). As in the previous experiment, when reaching position A the robot is
very confident about being in ASR 1, indicated by the distinct peak in the graph
in Fig. 4(g). At position B it has entered the big room being ASR 4. As can be
seen in Fig. 4(h) it is not sure about whether it is still in ASR 4, or whether it
has reached the next ASR already, the confidences for both being equally high,
with a slight bias towards ASR 4. Taking into account odometry inaccuracies
and the information that is available to the robot using the present localization
methods, this behaviour makes perfect sense. When it reaches position C after
travelling through the big room in a loop, the robot is highly confident (Fig. 4(i))
that it is still in ASR 4 (which is true for the positions in between as well, which
are not shown). Being close to where it has entered the room, the confidence for
ASR 3 starts to increase at this location. This effect becomes more prominent
in Fig. 4(j), when the robot is at position D, which is at the border between
ASRs 3 and 4. Again, it is unsure about which ASR it is in, meaning that it can
infer that it actually is at the border between two regions, near the entrance to
the room. Moving away from the border to position E (Fig. 4(k)), it is again
confident about being in ASR 4. At the last position F, the robot is very close
to its home position in ASR 6 already, which is reflected in the confidence values
shown in Fig. 4(l).

The results show that the method proposed provides a consistent approach
for creating and using an inexact “cognitive map” to allow a mobile robot to
localize itself. It does not provide the exact pose of the robot in the environment,
but rather an approximation, which we believe is sufficient for navigation and
new exploration.

5 Conclusion

We have presented algorithms for creating and utilizing a “cognitive map” on a
mobile robot equipped with sonar sensors and an odometer. As the range of the
sonars is only a few meters, the robot cannot apprehend large spaces at once.
The main focus in this paper was on showing that a “cognitive map” can be
computed robustly for these spaces, and how the robot localizes itself in these
spaces.

The algorithm for creating the “cognitive map” is based on the split and
merge method. It divides a given metric map into distinct regions (namely
ASRs), thus creating a topological representation on top of the metric one.
Features of the ASRs thus computed are then used as part of the localization
strategy, which can fuse information from different sources, resulting in a con-
fidence map that tells the robot where its current location in the environment
supposedly is. Currently, we exploit basic features only, namely ASR-distance
travelled and relative orientation between adjacent ASRs. The purpose of these



two simple is strategies is mainly to show how fusion and localization work with
our approach. They can easily be replaced or augmented by more sophisticated
methods: As long as each method computes a confidence value for each ASR, the
integration into the fusion approach is straightforward. Nevertheless, even the
basic strategies presented here are powerful enough to allow for a localization
that should be accurate enough for many applications.

Much has been discussed with respect to the use of distance information in
cognitive mapping. For example, numerous experiments with chickens and pi-
geons have shown that they are able to use both absolute and relative distance
in their search for food (e.g., [25]). Experiments with bees and ants have shown
that they can perform internal calculations of the distance and direction trav-
elled to perform path integration (e.g., [26] for a general discussion). Most of
these experiments were concerned with the actual distance travelled and how
the individual species deal with the errors in their measurements, as do most
work on robot mapping to date. Using our robot, we have shown another way of
using distance information, namely ASR-distance travelled as opposed to actual
distance travelled.

ASR-distance is obtained from the shape of the ASR computed. In the past,
there has been scant evidence that humans/animals do pay attention to the
shape of each local environment (or, in our terminology, ASR) very early on
in their initial exploration of a new environment. However, the debate has now
intensified and this is especially true in the animal literature where the problem
is commonly referred to as geometry in animal spatial behavior [27]. In many of
these experiments, a relocation task utilizing a box-shaped environment is used,
and the principal axes of the environment appear to be most useful. Our work
here emphasized yet another possibility, namely using a straight line distance
between exits of interests in an ASR.
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