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Abstract This contribution introduces MOBSY, a fully in-
tegrated autonomous mobile service robot system. It acts as
an automatic dialogue based receptionist for visitors of our
institute. MOBSY incorporates many techniques from differ-
ent research areas into one working stand-alone system. The
involved techniques range from computer vision over speech
understanding to classical robotics.

Among the two main aspects vision and speech we fo-
cus also on the integration aspect both on the methodological
and on the technical level. We describe the task and the in-
volved techniques. Finally, we discuss the experiences that
we gained with MOBSY during a live performance at our in-
stitute.
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1 Introduction

In service robots many different research disciplines are in-
volved, e.g. sensor design, control theory, manufacturing sci-
ence, artificial intelligence, and also computer vision and nat-
ural language dialogue. The latter two are especially impor-
tant since service robots should serve as personal assistants.
As a consequence service robots differ from other mobile
robotic systems mainly by their intensive interaction with
people in natural environments. In typical environments for
service robots, like hospitals or day care facilities for elderly
people, the demands on the interface between robot and hu-
mans exceed the capabilities of standard robotic sensors, like
sonar, laser, and infra-red sensors. Thus, in many cases com-
puter vision as well as natural language dialogue components
become essential parts of such a system.

In this paper we mainly concentrate on the following two
aspects of a service robot: computer vision and natural lan-
guage dialogue. We show a particular example application to
demonstrate how a mobile platform becomes a service robot
by integrating current research results from both areas into

one system. In contrast to other systems, e.g. [5,18], we nei-
ther concentrate on the technical design of a mobile platform,
nor on the learning ability of a mobile system in general [9].
Instead, we are mainly interested in the integration of vision
and speech to improve the capabilities of such systems, and
even to increase them.

The proposed integration mechanism is intentionally kept
as simple as possible. It is this simplicity that allows the trans-
fer and scaling of the techniques to other applications without
big effort. This is extremely useful in science and research,
where rapid prototyping of real systems is of great interest,
especially for experimental evaluation of achieved theoreti-
cal results. Beyond this, software modules that implement a
solution of a dedicated problem (e.g. visual self-localization
or speech recognition) are often developed independently in
their very own framework with a specialized set of tools be-
ing particularly suitable. Our integration mechanism is able
to embed such modules in a common environment but keeps
their individuality.

Currently, we provide a fully functional human-machine-
interface by natural language processing that cannot be found
for systems like MINERVA [36] or RHINO [9]. Several sys-
tems are known that include speech as one means for a
human-machine-interface (e.g. [6]); they mostly use simple
spoken commands. We provide a real dialogue component in
our system that takes as input spoken language and thus al-
lows for the most natural way of communication. An active
vision system is used for localization of the platform in a nat-
ural environment without the need of adding artificial mark-
ers in the scene. Additionally, events are recognized based
on the visual information acquired by the binocular camera
system. Thus, the camera system is essential for the robot’s
functionality, and not just an anthropomorphic feature.

The paper is structured as follows. In the next section we
formulate the task that we want MOBSY to execute. In Sec-
tion 3 we shortly describe the involved techniques of our sys-
tem, i.e. the computer vision, dialogue, and robotic modules.
Especially, we emphasize self-localization based on visual in-
formation, because in general this is a typical problem for
the classical sensors. Technical details on the whole service
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robot MOBSY are given thereafter in Section 4 as well as a
short discussion on the integration process. We conclude in
Section 5 with results and experiences that we gained when
MOBSY was in action. Finally, we give an an outlook to fu-
ture improvements and applications.

2 Task Description

As a test bed for our developments we chose a setup as can
be seen in Fig. 1. The scenario is an indoor area at our in-
stitute in front of the elevators. In this environment we want
MOBSY to act as a mobile receptionist for visitors, i.e. it has
to perform the following steps (cf. Fig. 2):

– MOBSY waits at its home position for one of the three
doors of the elevators to open. It moves its head to see the
doors in the sequence left, middle, right, middle, left, . . .

– If a person arrives, MOBSY approaches him/her on the
paths that are shown as lines in Fig. 1; during the ap-
proach it already addresses the person, introducing itself
as a mobile receptionist, and asks the person not to leave.

– After arrival in front of the person, it starts a natural lan-
guage information dialogue. Simultaneously, the binoc-
ular camera system starts to track the person’s head to
initiate a first contact.

– When the dialogue is finished, MOBSY turns around and
returns to its home position where it has to reposition it-
self, as the odometric information is not very accurate.

– Then the waiting process for a new person to arrive re-
sumes.

This main loop is repeated until MOBSY is stopped exter-
nally. Accomplishing the previously described steps requires
the coordinated combination of

– object detection and classification,
– visual face tracking and camera control,
– natural language dialogue,
– robot navigation including obstacle avoidance, and
– visual self-localization and recalibration.

The methods we used for these five areas are described in
more detail in the following section.

3 Modules

Object classification. For our scenario we expect visitors
of our institute to arrive by one of three elevators. It fol-
lows, that the arrival of a person is necessarily preceded by
the opening of one of the elevator doors. Therefore we use a
person indicator mechanism based on distinguishing between
open and closed elevator doors.

For that purpose we decided to use a support vector ma-
chine (SVM) as the classification technique that is predes-
tinated for solving two-class problems (cf. [34] for detailed
description). The SVM takes as input color images of size
96×72 of the doors of the elevators and it returns open or
closed as a result.

For training the SVM we compiled a training set of 337
images of elevator doors: manually labeled into 130 closed
and 207 open. An elevator door is regarded as open in the
range from open to half open, otherwise closed. The train-
ing phase results in 41 support vectors that determine the
discriminating hyperplane between the two classes. We used
SVMlight [22] for the implementation of a SVM framework.

Of course, an open door is not sufficient to decide for
the arrival of a person. Think of a visitor that wants to de-
part from the institute and an elevator door opens to pick him
up, or think of the situation of open doors but the elevator is
empty. In our current implementation such a detection error
would cause MOBSY to start to approach to that person, too.
Therefore, this situation has to be intercepted in an appropri-
ate way.

Face tracking. While MOBSY approaches an arrived per-
son and during the dialogue phase both cameras of the binoc-
ular vision system should fixate on the person’s face to main-
tain contact. If the person moves slightly the cameras should
maintain the fixation. This makes the person feel the attention
of MOBSY is focused on him. It could also be used for the
system to validate visually if there is still a person it should
serve, or if the person is already gone. Another aspect that
is not yet realized is that recognition of faces could also take
place during tracking.

Therefore two major problems must be solved: face de-
tection and controlling the motion of the cameras. Face de-
tection is based on discriminating skin colored regions from
other areas in the images [11] by computing a color distance
for each pixel. To reduce computation time we are using an
image resolution of 96×72 pixels. The center of gravity of
the skin colored pixels is assumed to be the position of the
face in the image. From the determined face positions in each
camera, steering commands can be calculated for the tilt and
vergence axes of the binocular system to bring the face’s posi-
tions into the centers of the images. Attention must be payed
to the fact that no independent tilt motion is possible because
of the mechanical constraints of the binocular camera system.
To keep the motions smooth and to let them look more nat-
ural, the vergence motions are compensated by appropriate
motions of the pan axis.

It is obvious, that skin color segmentation is not very spe-
cific to faces. But the following facts justify our choice. First,
it is very likely that detected skin color in a height between
approximately 1.60 m and 1.80 m is caused by a face, and
second, the algorithm works very fast and robust.

Dialogue. When the robot has reached its position in front
of the person, the dialogue module initiates the conversation
with a greeting and a short introduction into MOBSY’s ca-
pabilities. Our goal was to enable the robot to perform a nat-
ural language conversation with the user. For this purpose,
the dialogue module consists of four sub-units which form
a processing pipeline: for each utterance, the speech recog-
nizer computes an hypothesis of the spoken word sequence.
The word sequence is transformed into a semantic-pragmatic
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Fig. 2 Flowchart describing the main loop.

representation by the language understanding unit. In combi-
nation with the current dialogue state, the semantic-pragmatic
representation is used by the dialogue management for an-
swer generation. The generated system prompt is transformed
into an audible result by the speech synthesis unit. All sub-
units of the dialogue module have to be designed to deal with
high noise levels as well as with a diversity of the person’s ut-
terances. The noise level is partly caused by the environment
of the robot, for example, the elevator doors, other people on
the floor, and partly by the robot itself, because of its several
built-in fans and electric motors. The person’s utterances have
an unusually high degree of diversity, because of MOBSY’s
job to welcome visitors. In addition to this, MOBSY is among
the first ‘persons’ a visitor of the institute meets, so visitors
usually do not get any introduction into the system, except by
MOBSY itself. In the following, we describe in more detail,
how the sub-units of the dialogue module meet these chal-
lenges (cf. Fig. 3).

In order to remove the background noise before and af-
ter the user’s utterance, speech recognition starts only if the
energy level in the recorded signal exceeds a threshold for a
predefined duration and stops immediately after the energy
level falls below a threshold for more than a fixed amount of
time. High-frequency noise gets eliminated by a low-pass fil-
ter. Our robust continuous speech recognizer with a lexicon of

100 words uses mel-cepstrum features and their derivatives.
A more detailed description of the recognizer can be found in
[15,16]. We initialized the acoustic models of the recognizer
on training data of a different domain and adapted them to
the scenario with approx. 900 utterances of read speech. The
recognizer uses a simple bigram model. The language under-
standing unit searches for meaningful phrases in the recog-
nized word sequence. For additional information, please refer
to [28]. Each phrase has a predefined semantic-pragmatic rep-
resentation. Words that do not belong to meaningful phrases
are ignored by the language understanding unit. This simple
strategy results in a very high robustness to smaller recog-
nition errors and user behavior. The dialogue management
contains a memory for the state of the dialogue. It uses rules
to choose a suitable system prompt based on the dialogue
memory and the current input. For example, if the user asks,
“Where can I find it?”, the system provides information on
the location of the item that it was asked for in a previous
question. If the meaning of the recognized sentence does not
fit to the dialogue memory, an error of the speech recognizer
is assumed, and an appropriate answer is generated. In order
to prevent the robot from stupidly repeating always the same
prompts for greeting, etc. most system prompts are repre-
sented by a set of several different pre-recorded speech files.
One speech file for the current prompt is chosen randomly
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Fig. 3 A closer look on the dialogue module.

and played. For maximum intelligibility, we decided to use
the German Festival speech synthesis system [7,25] to record
the system prompt speech files.

Navigation and obstacle avoidance. If MOBSY recogniz-
es an arriving person, the robot moves straight to a prede-
fined position in front of the door (cf. Fig. 1). While moving,
MOBSY looks in the direction of its movement, thus facing
the person waiting at the elevator. After the dialogue phase
MOBSY returns straight to its initial position. Currently, the
navigation tasks are only implemented in a rudimentary way,
i.e. no path planning nor other intelligent strategies are used.
They will be integrated in a later stage of the project.

With the robot operating in an environment where many
people are present, obstacle avoidance is essential. Non-de-
tected collisions could cause serious damage, because of the
robot’s considerable weight. We use the infra-red and tactile
sensors for the detection of obstacles. Thus, we are able to
detect persons at a distance up to 30 - 50 cm away from the
robot, depending on the illumination of the room and the re-
flectivity of the peoples’ clothes. The tactile sensors are used
for reasons of safety only, i.e. they react as a last instance in
cases where the infra-red sensors fail. If an obstacle is de-
tected, MOBSY stops immediately and utters a warning that
it cannot move any further.

Self-localization. For self-localization we use a neon tube
that is mounted at the ceiling. By analyzing an image of the
lamp we can calculate its direction as well as its position rel-
ative to the robot. Knowing the desired direction and position
from measurements in advance, correction movements can be
determined to reposition the robot to its true home.

Fig. 4 shows the 3-D configuration that is used here. The
position of the lamp is defined by the end point p1 and a
second distinct vector p2 on the lamp which can be chosen
arbitrarily. We move one of the stereo cameras such that it
points to the presumed position of p1 and take an image as
shown in Fig. 5. If the lamp is not fully visible in the first
view we perform a heuristic search for it. The extraction of
the projections q1 and q2 of p1 and p2 into the image can be
done easily by analyzing the binarized image. Note that q2

may be located arbitrarily on the line. We approximate a line
by doing linear regression using the bright points and find the
visible end point by a simple search along this line.
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Fig. 4 3-D configuration for self-localization.

The coordinate system is defined to be such that its origin
corresponds to the projection center of the camera, the z-axis
is perpendicular to the floor, and the y-axis points to the front
of the robot. It is also assumed that the camera center is at
the intersection of the pan and tilt axes of the binocular cam-
era system and that it also intersects the rotation axis of the
robot. In reality, these axes do not intersect exactly, but this
approximation works fine in our experiments.

The plane E1 is defined to be parallel to the floor. The
plane E2 contains both, the origin and the line that describes
the lamp. The vector v is defined to point in the direction of
the intersection of these two planes and can be calculated by
the formula v = (p′

1 × p
′

2) × (0, 0, 1)T.
From our setup we can measure the desired coordinates

pd of the lamp’s end point relative to the coordinate system
and also the desired direction vd of the lamp (in our example
vd = (0,−1, 0)

T ). If the robot would be located at the de-
sired position, pd would point to the same direction as p

′

1 and
vd to the same direction as v. If they are not the same, the
robot must be rotated by the angle −α. The necessary correc-
tive translation can be determined by rotating p

′

1 by α around
the z-axis, scaling the result to the size of pd, and subtracting
pd.

For the general case of vision based localization and nav-
igation we already presented a method using lightfields as
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Fig. 5 Image of a lamp used for self-localization.

scene models [21] and particle filters for state estimation [20].
Since currently a self-localization is necessary only when the
robot is back in its home position, a iterative self-localization
over time is not suited. Later on, when the robot is also used to
guide visitors to offices of employees, we will substitute the
current module with the lightfield based localization frame-
work.

4 System Design

In this section we present the design of our autonomous mo-
bile platform in more detail. At first we explain the most im-
portant hardware components, followed by a description of
the software integration process.

Robot hardware. MOBSY is designed to be completely
autonomous. All equipment for proper operation must be car-
ried by MOBSY, e.g. additional batteries, axis controllers,
speakers, etc.

The freedom in system design is restricted by the mobile
platform itself, i.e. the lower part of MOBSY that contains
the drive. The robot is a cylindrically shaped XR4000 from
Nomadic Technologies. Inside the platform there are two PCs
running under Linux. One of the PCs is responsible for mo-
tion and sensor control, the other PC, a dual Pentium II 300
MHz, is used for all high level tasks like vision, path plan-
ning, speech recognition.

On top of this “out of the box” platform XR4000, we
mounted a two-storied rack for carrying all additional equip-
ment (cf. Fig. 6), because there is no room left inside the plat-
form itself. Especially all components of the vision system
(controllers for the head’s axes, cameras, batteries, the head
itself) require most of the available space. Integrating the vi-
sion system was also the most challenging part in our system
design.

One advantage of the chosen rack solution is that the “lev-
el of interaction” is lifted from the platform’s height to one
that is more similar to a human being. Among other aspects,
“normal” height may yield an increased acceptance of the
robot by the users, because, at least in this point, users do

Fig. 6 MOBSY the autonomous mobile service robot.

not need to adapt to the robot. Possibly this lets a person for-
get a little bit about that he is interacting with a robot, and not
with a human vis-a-vis.

The vision system that we use is a 10 DOF Bisight/Uni-
sight binocular system from HelpMate Robotics. Because no
display is connected to the PCs while the platform is in opera-
tional mode, and therefore no images from the cameras could
be investigated online, we mounted two small LCD panels for
monitoring what the cameras see.

Also on the most upper level of the rack we mounted the
interface for the dialogue component, i.e. microphone and
two loudspeakers. The microphone has a high degree of di-
rectivity that helps to make the speech recognition process
more robust against high background noise.

Software integration. Programming or configuring a pat-
tern analysis system requires specialized knowledge about
the effects of signal processing algorithms as well as knowl-
edge of the implementation and interfaces. Several program-
ming languages and programming systems are available for
this task; many systems were written in C (e.g. [14,29]), Java
(e.g. [23]), Fortran (e.g. SPIDER [35]), etc. The program-
ming language C++ has been used widely, e.g. in the context
of an iconic kernel system IKS [17] and the activities that
lead to the international standard PIKS [8,10,1,33]. Speech
processing is mostly done in C, e.g. for the HTK system [37].

Several libraries for image processing routines are avail-
able for each of these languages, e.g. the PIKS standard men-
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tioned above, or the libraries in the image understanding en-
vironment [19,26]. The larger the application gets that uses
such libraries, the higher is the importance of well-structured
software.

Summarizing from the modules and algorithms described
in the previous sections, the requirements for a common soft-
ware platform include implementations of Hidden Markov
Models for word recognition, statistical classifiers for images
and speech, hardware interfaces for digitizers of sound and
video, controllers for motors, filters for 1D and 2D signals,
Kalman and particle filters for tracking objects in images or
to model temporal events in sound, just to mention some.

As vision and speech analysis is carried out from the sig-
nal level up to an interpretation, a knowledge-based or model
driven system is required that should also be shared wherever
possible. High demands on efficiency result from the real-
time constraints imposed to parts of the processing chain.

As the flowchart in Fig. 2 indicates, there exist two levels
on which an integration of software is necessary.

– The task level, indicated in Fig. 2 by the boxes named
Wait, Approach, Service, and Home and the arrows that
connect them.

– The modules level that is indicated by the gray shaded
boxes.

Depending on the level, different integration techniques are
appropriate.

On the most abstract level, the task level, the overall be-
havior of the system is determined and integration focuses
mainly on the combination of the modules to build the cor-
rect sequence. The tasks are solved sequentially. In our sys-
tem, the module sequence is scheduled and synchronized by
the Unix shell. For example, the module Addressing is started
when the module Door Observation reports an arrived per-
son. Parallelism is achieved by the Unix process mechanisms
that allow of background processes and the controlled stop-
ping of processes by signaling. Proceeding like this has one
important advantage: exchanging modules is relatively sim-
ple. We experienced this, when we had to replace our first
revision of the door detection that used color histograms by
the more effective technique based on SVM.

On the second level, the modules level, that defines the
functionality of the system, integration is not that simple. The
modules are executed simultaneously and require synchro-
nization. For example, for face tracking computer vision and
active camera control have to be carried out in one process.
As each module represents a research task on its own in our
institute, a separate solution is required for each. On the other
hand, as re-inventing the wheel too many times delays real
scientific and technical progress, the contributors were urged
to share software from the very beginning of their implemen-
tation. For over a decade such cooperation lead to integration
of partially divergent work, as e.g. shown for object recogni-
tion and tracking in [13].

As we have shown in [31,32], class hierarchies in C++
can be used to encapsulate actors that are used in active vi-
sion. As our system is equipped with an active camera, these

classes are used to rotate camera axes. A similar abstract in-
terface is used for robot control and hides controller details;
some details on the class hierarchy for these hardware in-
terfaces can be found in [30]. This is useful for the naviga-
tion and obstacle avoidance module. Robot control and im-
age analysis have thus been successfully integrated. Synchro-
nization and message passing on the control level for robotic
hardware have simply been possible by the use of threads.
Other class hierarchies provide the common interfaces for
the required algorithms mentioned in the beginning of this
section, such as classifiers and Hidden Markov Models. Cur-
rently no knowledge base is used in the vision system of our
autonomous robot, but a common knowledge-based system
applied simultaneously in vision and speech has already been
established, as demonstrated in [2,27]. The modules of our
vision software system are to some extent portable to other
software systems, as the experiments on the system ADORE
[4] prove, when this system was used to work with our al-
gorithms to generate hypotheses for object recognition in an
office room [3].

Currently, there has to be little time-critical interaction
and information exchange between the dialogue and the face
tracking modules. Therefore we preferred to separate the di-
alogue part from the robotic and vision tasks. It turned out to
be sufficient to run the dialogue and face tracking processes
in parallel on the task level.

5 Conclusion and Future Work

First we would like to mention that our system operated non-
stop for more than two hours without any human interven-
tion at the 25th anniversary of our institute. The robot had to
deal with many people coming out of the elevator or stand-
ing around while talking to each other, thus generating a high
noise level (cf. Fig. 7; many more images and movies are
available from the web site [24]). The robustness is regarded
as a great success, especially since the whole integration pro-
cess took only about two man-months.

In this contribution we introduced MOBSY as an exam-
ple of an autonomous mobile service robot, acting as a re-
ceptionist for visitors of our institute. Research results from
many different areas were combined into one fully opera-
tional system. In addition to the performance at the anniver-
sary, in the meanwhile MOBSY demonstrated its robustness
as autonomous receptionist many times, not only for invited
visitors of the institute but also for groups of students and
pupils. One can really say that MOBSY is an attraction that
transforms research to a practical experience.

Increasingly, the aspect of smart interaction with people
plays an important role in service robotics. Therefore natu-
ral language dialogue and computer vision components have
to be integrated with classical robotic sensors. Choosing an
appropriate integration policy is a crucial point for building
a running and robust system of these very diverse compo-
nents. Especially, if the modules that become integrated were
developed independently of each other. With MOBSY being
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Fig. 7 MOBSY operating at the 25th anniversary.

a success as a mobile receptionist and regarding the time it
took to get MOBSY working as expected, we have demon-
strated that integration does not necessarily need to be highly
sophisticated to yield a complex system behavior. Quite the
contrary, we think that simplicity of integration keeps the sys-
tem open to further developments and extensions, because
modules can be easily exchanged and new modules can be
embedded without big effort.

Safety is one of the major topics when autonomous mo-
bile systems deal with people, especially if there are many of
them. Due to the short range of the used infra-red sensors we
were forced to move MOBSY at relatively low speed, so that
the platform stops early enough in front of a detected obstacle
or person. This leads to the drawback that it takes a relatively
long time, approximately five seconds, for the robot to reach
its destinations in front of the elevator doors. People arriving
at the institute may leave the elevator and go away because
they are not aware of the mobile receptionist. Therefore we
introduced that MOBSY addresses the person immediately
after it was detected. This reduced the number of situations
where the dialogue module started to talk to a closed eleva-
tor door. If however this case happened, a timeout in the dia-
logue module recognizes the absence of a person and initiates
the homing of the platform. This simple attention mechanism
will be replaced in the future by a visual module that checks
for the presence of people.

The definition of evaluation criteria for the performance
of a system like MOBSY is not a trivial task. Of course it
would be possible to evaluate the reliability and accuracy of
each of the system’s subunits, but there exist additional as-
pects concerning the whole system that cannot be expressed
by a simple number, for example, the acceptance by the users.
Currently, this topic remains under further investigations.

In the future we will extend the capabilities of MOBSY.
Beside the classical robotic tasks we will especially focus on
the vision and dialogue components of the robot. For exam-
ple, we want the platform to guide visitors to the employees
or to special places of the institute, based on visual tracking
and navigation. Beyond pure navigation our robot should be
able to press the button to call the elevator, if someone wants
to leave the institute. Pressing the button requires the ability

of MOBSY to visually localize it and to press it with a grip-
per.
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