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Abstract: We present an iterative registration algorithm for
aligning two differently scaled 3-D point sets. It extends
the popular Iterative Closest Point (ICP) algorithm by es-
timating a scale factor between the two point sets in every
iteration. The presented algorithm is especially useful for
the registration of point sets generated by structure-from-
motion algorithms, which only reconstruct the 3-D struc-
ture of a scene up to scale.

Like the original ICP algorithm, the presented algorithm
requires a rough pre-alignment of the point sets. In order
to determine the necessary accuracy of the pre-alignment,
we have experimentally evaluated the basin of convergence
of the algorithm with respect to the initial rotation, trans-
lation, and scale factor between the two point sets.
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1. INTRODUCTION
Registration of 3-D data, also known as motion and corre-
spondence estimation, has a wide range of applications. It
is used for combining range images obtained by scanning a
3-D object from several viewpoints, in order to build a com-
plete 3-D model of the scanned object [1]. Another appli-
cation is the comparison of scanned faces to a database of
3-D face models for face recognition [2]. As a final exam-
ple, it is also employed for the registration of 3-D data re-
constructed by structure-from-motion algorithms from en-
doscopic images to computer tomography data [3].

As the Iterative Closest Point (ICP) algorithm is the most
popular algorithm for registration of 3-D data, there are
many extensions to the basic algorithm introduced inde-
pendently by Besl and McKay [4] and Chen and Medioni
[5]. A comprehensive summary of different extensions and
an experimental evaluation focussing on their speed of con-
vergence can be found in [6].

In many applications, the 3-D data used as input for the
ICP algorithm contain high levels of noise and outliers.
Consequently, improving the robustness of the registration
is a primary concern. Approaches applying the least me-
dian of squares technique at different levels of the ICP algo-
rithm have been presented in [7] and [8]. A comparison of
three robust algorithms, including the two algorithms men-
tioned above, can be found in [9]. Recently, the Trimmed
ICP algorithm was proposed for robust registration [10].

Another active area of research is the problem of finding
a rough pre-alignment of the input data, because the ICP
algorithm is susceptible to converging to a local optimum
if its starting point is too far from the correct registration.
A short summary of different techniques for pre-alignment
of the input data can be found in [1].
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Structure-from-motion algorithms only reconstruct the
3-D structure of a scene up to scale. Consequently, if at
least one of the data sets to be registered is generated by
structure-from-motion algorithms, the additional problem
of estimating the scale factor between the two data sets
arises. In [3], this problem is solved by estimating the scale
factor in a pre-alignment step, before applying the ICP al-
gorithm. In this paper, we show how to estimate the scale
factor within the ICP algorithm, which results in a more
accurate estimate of the scale factor and, consequently, in
a more accurate registration. Furthermore, the conceptual
simplicity of the integration allows the simultaneous use of
a wide range of other extensions to the ICP algorithm. To
the best of our knowledge, a solution for simultaneous es-
timation of rotation, translation, and scale factor within the
ICP algorithm has never been proposed before.

In the next section, we shortly present the structure and
the mathematical details of the standard ICP algorithm. In
Sect. 3, we describe the proposed extension of the ICP al-
gorithm with integrated scale estimation. Finally, the per-
formance of our algorithm is demonstrated in several ex-
periments on point sets generated by structure-from-motion
algorithms in Sect. 4.

2. THE ICP ALGORITHM
As we are mainly interested in working with data obtained
by structure-from-motion algorithms, we are focussing our
discussion of the ICP algorithm on the use of 3-D point
sets. Nevertheless, our proposed algorithm also works with
other data representations, like range images, line sets,
parametric surfaces, or triangle meshes.

In our case, the input data of the ICP algorithm consists
of two point sets, the set of data points A and the set of
model points B. The solution of the registration problem
is then given by the rotation matrix R ∈ IR3×3 and the
translation vector t ∈ IR3 that best align the data point set
and the model point set.

The basic structure of the ICP algorithm is to iteratively
perform the following two steps until convergence. In the
first step, corresponding point pairs in the data point set
and the model point set are determined. In the second step,
the motion that best aligns the corresponding point pairs is
computed and applied to the data points. As the registration
error is reduced in every step, the standard ICP algorithms
always converges in finite time [4].

The first step of the ICP algorithm can be divided into
several smaller parts. At first, control points have to be
selected. The simple strategy of the standard ICP algorithm
is to use all data points as control points. Other strategies
include selecting a mixture of data points and model points
[6] or using a hierarchical point selection scheme in order
to increase the computation speed [9].



Then, for each control point from the set of data points,
the closest model point is found using nearest neighbor
search. Thus, the set of corresponding point pairs

C = {(i, j) | ai∈A and bj ∈B are corresponding points}

is formed. As this operation is the most time-consuming
operation of the ICP algorithm, we propose to use a highly
optimized k-D tree nearest neighbor search algorithm for
maximum performance [11].

After the corresponding point pairs have been formed,
erroneous point pairs can be rejected. When no additional
information is available, only the distance of the two points
in a pair can be used to discriminate good pairs from out-
liers. A versatile method for computing the maximum al-
lowable distance is described in [12]. The main idea is to
robustly estimate the standard deviation of the distances,
and to reject point pairs with a distance greater than a cho-
sen multiple of this standard deviation.

Although the described outlier rejection is not part of
the standard ICP algorithm, it can be applied whenever in-
creased robustness to noise and outliers is required. As a
downside, it entails a small chance that the ICP algorithm
fails to converge in finite time, which can be handled by
setting a threshold for the maximum number of iterations.
Another disadvantage is that any kind of outlier rejection
reduces the speed of convergence of the ICP algorithm.

The second step of the ICP algorithm is the computa-
tion of the motion that aligns the corresponding point pairs,
which is also known as the absolute orientation problem.
As we use the sum of squared distances of the correspond-
ing point pairs as error measure, the minimization problem
can be written as

(R∗, t∗) = argmin
R,t

∑

(i,j) ∈C

‖bj − Rai − t‖
2
. (1)

A comparison of four algorithms for solving this prob-
lem can be found in [13]. We selected the algorithm
based on singular value decomposition (SVD), which con-
sistently provides a high level of accuracy, stability, and
speed. First, the center of mass ā of the selected data points
and the center of mass b̄ of the corresponding model points
are computed according to

ā =
1

|C|

∑

(i,j)∈C

ai , b̄ =
1

|C|

∑

(i,j)∈C

bj . (2)

Centralizing the point sets yields the minimization problem

R
∗ = argmin

R

∑

(i,j)∈C

∥

∥

(

bj − b̄
)

− R (ai − ā)
∥

∥

2
. (3)

This problem is solved by computing the SVD of the matrix

K =
∑

(i,j)∈C

(

bj − b̄
)

(ai − ā)T = UDV
T (4)

and setting R
∗ = UV

T . It is possible that the computed
matrix R

∗ is not a pure rotation, but includes a reflec-
tion. This special case is easily corrected by multiplying
the third column of matrix U by −1. Finally, the transla-
tion vector t

∗ can be computed as t
∗ = b̄ − R

∗
ā.

The standard ICP algorithm is stopped when the change
of the registration error falls below a specified threshold.
Due to the outlier rejection, which can cause a temporary
increase of the registration error, it is better to monitor the
change of the motion parameters in our algorithm. Addi-
tionally, a threshold for the maximum number of iterations
prevents an infinite loop in the rare case of divergence.

3. INTEGRATED SCALE ESTIMATION
Accurate registration of two differently scaled point sets is
very useful for applications that work with 3-D data gen-
erated by structure-from-motion algorithms. Our approach
integrates the scale estimation into the ICP algorithm, so
that rotation, translation, and scale factor are estimated si-
multaneously in every iteration of the algorithm. Conse-
quently, in the same way that rotation and translation have
to be roughly initialized, the scale factor also has to be
roughly known.

With the integrated scale factor estimation, the mini-
mization problem in (1) becomes

(R∗, t∗, s∗) = argmin
R,t,s

∑

(i,j) ∈C

‖bj − sRai − t‖
2
. (5)

It is interesting to note that the estimation of the rotation
matrix is not affected by the introduced scale factor at all.
Applying any scale factor to the data point set amounts to
multiplying matrix K in (4) by this scale factor, which does
not change the matrices U and V

T . Therefore, the rotation
matrix can be computed first.

Now, the scale factor is the only unknown in the mini-
mization problem

s∗ = argmin
s

∑

(i,j)∈C

∥

∥

(

bj − b̄
)

− sR∗ (ai − ā)
∥

∥

2
. (6)

After defining the vectors

b̃j =
(

bj − b̄
)

, ãi = R
∗ (ai − ā) , (7)

the scale factor s∗ is given by

s∗ =
∑

(i,j) ∈C

b̃j

T
ãi /

∑

(i,j)∈C

ãi
T
ãi . (8)

As the last step of the new algorithm, we compute the trans-
lation vector t

∗ according to t
∗ = b̄ − s∗R∗

ā.
The additional operations required by the scale estima-

tion in every iteration only slightly increase the computa-
tion time of the algorithm. The effects of the scale estima-
tion on the number of iterations of the ICP algorithm will
be evaluated experimentally in the next section.

4. EXPERIMENTAL EVALUATION
For the experimental evaluation of our ICP algorithm with
integrated scale estimation, we used two point sets gener-
ated by structure-from-motion algorithms with 3000 points
each. The first point set Phead was reconstructed from a
human head, the second point set Pdesk represents the 3-D
structure of a cluttered desk. Both point sets were scaled
so that they fit into a cube with an edge length of 100 units.
An image from each video sequence used for reconstruc-
tion and an image of each point set can be seen in Fig. 1.



Figure 1: Point sets used for evaluation

The point sets themselves were used as model point sets.
The creation of the data point sets started with copying the
model point set. Then, Gaussian noise with a standard devi-
ation of 0.2 was applied to every coordinate of every point.
Finally, a specified rotation, translation, and scaling were
applied to the data point set.

We evaluated the ICP algorithm with and without scale
estimation. Different rotation angles, translation vector
lengths, and scale factors were tested with 1000 trials for
each setting. For each trial, the noise, the rotation axis, and
the translation direction were determined randomly.

The basin of convergence of the algorithms was mea-
sured by observing the percentage of successful registra-
tions. To this end, we computed the motion required to
move the data point set from the estimated position to the
correct position. A registration was considered success-
ful when the required motion had a rotation angle of less
than 0.1◦, a translation of less than 0.025 units, and a
scale factor between 0.999 and 1.001. For our configura-
tion, these thresholds reliably separate correct registrations,
which are markedly more accurate, from incorrect registra-
tions, which are much further off.

In the first experiment, we tested the basin of conver-
gence of the algorithms with respect to the rotation angle.
The translation vector length was set to 7.5 units, the scale
factor to 1.0. Fig. 2 illustrates that the registration percent-
age is close to 100 percent for rotation angles of up to 30◦.
For larger angles, the added scale estimation decreases the
registration percentage moderately for the point set Phead

and strongly for the point set Pdesk.
In the second experiment, we evaluated the basin of con-

vergence with respect to the translation vector length. The
rotation angle was set to 15◦, and the scale factor was set
to 1.0. Fig. 3 shows that the results differ dramatically for
both point sets. For the point set Phead, the registration per-
centage begins to drop at translations of about 10 units. For
larger translations, the algorithm with scale estimation fails
in notably more trials than the standard algorithm. For the
point set Pdesk, on the other hand, the standard algorithm
is not affected by translations of up to 30 units, whereas
the performance with scale estimation degrades rapidly for
translations of more than 10 units.

When the translation is large, model points on the far
side of the data point set are not chosen as corresponding
points. Consequently, in the first iteration, the scale of the
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Figure 2: Evaluation of the basin of convergence of the ICP
algorithm (standard / with scale estimation) with respect to
the rotation angle
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Figure 3: Evaluation of the basin of convergence of the ICP
algorithm (standard / with scale estimation) with respect to
the translation vector length

model point set is underestimated relative to the data point
set, and the data point set is scaled down to match this scale
before the second iteration. The effects of this behavior are
further examined in the next experiment.

Finally, the basin of convergence with respect to the
scale factor was tested in the third experiment. For this ex-
periment, we used a rotation angle of 15◦ and a translation
vector length of 7.5 units. Please note that the scale factor
in Fig. 4 denotes the estimated scale factor, so that for a
scale factor of 0.5, the data point set has twice the scale of
the model point set. The registration percentage is close to
100 percent for scale factors ranging from 0.5 to 1.2. and
rapidly drops for scale factors larger than 1.2.

When the data point set has a smaller scale than the
model point set, it sometimes gets stuck inside the model
point set. This happens because points at the outer edge of
the model point set are never chosen as nearest neighbors
of the data points, because other points inside the model
point set are closer to the data points. Fig. 4 also demon-
strates that the severity of this problem strongly depends on
the shape of the point sets.

The computational efficiency of the integrated scale esti-
mation is very good. The additional operations required in
each iteration are negligible, because the nearest neighbor
search requires most of the computation time. As the speed
of convergence of the ICP algorithm is slightly slowed by
the integrated scale estimation, the number of required it-
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Figure 4: Evaluation of the basin of convergence of the ICP
algorithm with scale estimation with respect to the scale factor

erations increases by approximately 25 percent. In our ex-
periments, the run time for two point sets with 3000 points
ranges from 60 ms to 200 ms on a Pentium 4 with 2.4 GHz.

Several conclusions can be drawn from our experiments.
The basin of convergence of the ICP algorithm with and
without integrated scale estimation depends strongly on the
shape and structure of the point sets. The integrated scale
estimation moderately decreases the basin of convergence
of the ICP algorithm with respect to rotation and transla-
tion, but allows the accurate recovery of an unknown scale
factor, which is not possible with the standard algorithm.
Finally, we observed that our scale estimation better toler-
ates a larger scale of the data point set than a larger scale of
the model point set.

5. CONCLUSION
We presented an algorithm for aligning two differently
scaled 3-D point sets, which extends the ICP algorithm by
estimating a scale factor between the point sets in every it-
eration. As the proposed motion estimation with integrated
scale estimation is a drop-in replacement for the standard
motion estimation, it can easily be applied to a wide range
of existing variants of the ICP algorithm.

Our experiments proved that our algorithm can success-
fully estimate rotation, translation, and scale factor be-
tween roughly pre-aligned point sets. As the integrated es-
timation of the scale factor benefits from more accurate reg-
istration and outlier rejection in every iteration, it is more
accurate than methods that estimate the scale factor before
applying a standard ICP algorithm. Although the basin of
convergence with respect to rotation and translation is mod-
erately decreased by the integrated scale estimation, this
can easily be compensated by more accurate pre-alignment
or by starting the estimation from several different initial
alignments.
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