
 

1-4244-0025-2/06/$20.00 ©2006 IEEE    RAM 2006
  

Computing a Network of ASRs using a Mobile Robot 
Equipped with Sonar Sensors

Chee K. Wong, Wai K. Yeap, and Jochen Schmidt 
Institute for Information Technology Research 

Auckland University of Technology 
Auckland, New Zealand 

{chee.wong, wai.yeap, jochen.schmidt}@aut.ac.nz 
 
 

Abstract— This paper presents a novel algorithm for 
computing absolute space representations (ASRs) [1]-[2] for 
mobile robots equipped with sonar sensors and an odometer. The 
robot is allowed to wander freely (i.e. without following any fixed 
path) along the corridors in an office environment from a given 
start point to an end point. It then wanders from the end point 
back to the start point. The resulting ASRs computed in both 
directions are shown. 
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I.  INTRODUCTION 
In recent years the idea of computing a network of local 

(metrical) spaces as a representation of the environment that an 
autonomous agent has experienced is gaining momentum. This 
idea, commonly known as computing a hybrid map, is favored 
by both the pragmatists (i.e. those researchers interested in 
building mobile robots) and the theorists (i.e. those researchers 
interested in developing computational theories of cognitive 
maps). 

Thrun [3] implemented a mobile robot that computes grid-
based maps of its environment using artificial neural networks 
and naïve Bayesian integration. From the grid-maps, it 
generates networks of empty spaces.  The network 
representation is used for fast planning and problem solving. 
Tomatis, Nourbakhsh and Siegwart [4] offered a different 
solution – they compute a topological network of open spaces 
found in corridors and metric maps for rooms. The latter are 
then attached to the appropriate nodes in the network. Open 
spaces in corridors are distinguished by the presence of 
physical corners separating them. 

Kuipers and his team [5]-[6] recently investigated the use of 
hybrid maps within the Spatial Semantic Hierarchy framework 
[7] for cognitive mapping. They showed how a metric map 
constructed for each local environment (which they called local 
perceptual maps) is analyzed to generate a local topology 
description which is then used to create a network of “places”. 

In this paper, we present a different algorithm for 
computing a hybrid map. The algorithm is specifically 
designed for use on a mobile robot equipped with sonar sensors 
and an odometer.  Our approach and motivation in constructing 
a hybrid map is different from those mentioned earlier. For 
example, in Thrun’s approach, the network is computed after 
having computed a detailed metric map of the environment. 

The network is computed because the metric map is found to 
be inefficient for planning purposes. The network is thus an 
abstraction of the information made explicit in the metric maps; 
it is not computed directly from the environment. In contrast, 
Tomatis et al. computed the network representation first and 
the representation played an important role in learning the 
environment (especially in solving the localization problem). 
However, their implementation is restricted to an environment 
consisting of offices and corridors and the environment must be 
learned by exploring corridors first and then offices. 

Kuipers and his team introduced the “perceptual maps” to 
ground the place representations described in his Spatial 
Semantic Hierarchy. Their work is most similar to ours in that 
we both are attempting to ground a theory of cognitive 
mapping using a mobile robot. However, instead of generating 
a local topology for each metric map, our metric map is 
constructed only to provide a rough description of the shape of 
the local environment. It has been argued that such a 
representation forms the basis for subsequent learning of a 
much richer description of each local environment [1]-[2]. 
Following [1]-[2], we continue to refer to such a representation 
as an absolute space representation (ASR). Our hybrid map is 
thus a network of ASRs; a link between two ASRs in the 
network indicates that the individual has experienced moving 
between the two local environments.  

It is important to realize that computing a hybrid map 
consisting of a network of ASRs does not enable one, in 
general, to then use the map to move about successfully in the 
environment, at least not initially. To do so, it requires the 
individual to have successfully localized itself while computing 
the map. For humans/animal cognitive mapping, this 
localization problem is solved via repeated visits to a place and 
via the enriching of each local environment with more 
information other than improving the precision of the metric 
map. Our primary goal is to develop a robotic platform for 
testing theories of cognitive mapping. We are not just 
interested in designing a robot that can compute a map of its 
environment successfully for navigation purposes. 

In this paper, we show how a robot equipped with sonar 
sensors and an odometer can compute a network of ASRs. 
Yeap and Jefferies [2] showed the importance of identifying 
exits when computing ASRs. Exits are important because 
through them, one explores the world.  However, with the use 
of sonar sensors, it is difficult for our robot to locate exists 



 

         

reliably. Furthermore, given the poor readings, it is also better 
to compute an ASR after moving through it rather than 
computing one at the entrance of a new ASR. Our robot is thus 
more like a blind person than a sighted person. 

A new algorithm is proposed. The key ideas underlying our 
new algorithm are as follows: 

1. ASRs are computed for each path traversed – a path is 
a single continuous movement of the robot through 
the environment (i.e. without any stopping or turning); 

2. The important exits found in a path are the exits at 
both ends of it (i.e. given the poor sensing, one cannot 
trust the side exits detected). This means that the 
required ASR for path is the bounded region for the 
path; 

3. To compute the bounded region, preference is given 
to using the large surfaces as opposed to the smaller 
ones; 

4. A split and merge algorithm [8] is then used to split or 
combine ASRs obtained from single paths to produce 
the final ASRs for the environment. 

Section II describes the experiments we conducted to test 
our new algorithm. Section III presents the news algorithms in 
detail. Section IV presents the results obtained and section V 
concludes the paper with a discussion of future work. 

II. THE EXPERIMENT 
The robot we use is a Pioneer 2 robot from ActivMedia and 

it came with a ring of 8 sonar sensors. The robot is positioned 
somewhere in the corridor in an office environment and is 
allowed to explore the environment until it is told to stop. No 
modification of the environment is done. That is, things that 
already existed in the environment (such as rubbish bins, 
flower pots, cabinets, etc.) remain there and doors leading into 
offices are close or open depending on the time of the 
experiment. 

The environment used and one of the paths the robot took is 
as shown in Fig. 1. It does not use a wall-following procedure 
to navigate. It simply moves forward until it could not and then 
it “looks” for an empty space to move forward again. 
“Looking” is done using all the eight sensors but information 
about the environment is sensed via the two side sensors. The 
exploration algorithm can now be described as follows: 

1. Move in a “straight” line and collect sonar data from 
the sides; 

2. Stop when an obstacle is encountered; and 

3. Turn away from the obstacle but maintain a forward-
going direction 

 
Figure 1.  The environment used for the experiment and the path shown is 

one of the paths taken by the robot. The total distance traveled is about 70m. 
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Figure 2.  Initial surfaces perceived 
 

III. ALGORITHMS FOR COMPUTING ASRS 
 

Fig. 2 shows the initial surfaces computed from the sonar 
readings obtained by the robot traversing the environment 
along the path as shown in Fig. 1. As can be seen, there are too 
many spurious surfaces. We pre-process the input by removing 
outliers and insignificant surfaces. Fig. 3 shows the actual 
surfaces used as input for computing ASRs. 
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Figure 3.  Sonar readings used as input for computing ASRs 
 

The algorithm for computing ASRs consists of two steps. 
First it needs to compute an ASR after every single path 
traversed and then split or combine these ASRs after 
completing the journey to generate the final ASRs for the 
whole environment traversed.  

Fig. 4 shows four paths the robot took to travel down a 
corridor. In the final analysis, the four ASRs produced will be 
merged into a single ASR. This single ASR represents the ASR 
computed for the whole corridor. ASRs computed for a single 
path needs to be merged or split later because the environment 
is sensed in a piecewise manner. Note that even for a robot 
with vision or with more powerful sensing, these two steps are 
also essential: the first step would compute an initial ASR from 
the first view after entering a new local environment and the 
second step would require updating the initial ASR with 
information obtained later from subsequent views [2]. Fig. 5 
shows a situation where a split is required. 

To compute an ASR for a path, we first identify those 
surfaces that could be part of the boundary for that path. Then 
we compute the boundary itself. Since with sonar, one has 
more confidence sensing the presence of a large surface than 
that of a small surface, it is thus best to consider the larger 
surfaces first. Furthermore, the large surfaces give one a strong 
sense of where the boundary lies. 

To select the surfaces for boundary consideration, we begin 
with the surfaces that are considered as “large”. If there are a 
sufficient number of them, we will use them to compute the 
boundary. If not, other smaller surfaces are also used. The 
algorithm that we have implemented can now be described as 
follows (the threshold values used are intuitively chosen): 

Algorithm #1: Computing an ASR for a path 

Step 1: selecting surfaces – four possible iterations: 

1. Select all perceived surfaces that are greater than 
700mm in length. If the sum of the surfaces selected is 
greater than 70% of the distance traveled, then go to 
step 2. 

 

Figure 4.  The four inner circles mark the four paths the robot took to travel 
down the corridor. 

 
 
 

 

Figure 5.  In this path, the robot generates a single ASR but in the final 
analysis, this ASR will be split into two ASRs. The two circles indicate where 

the split could happen. 
 
 

2. Select all perceived surfaces that are greater than 
500mm in length. If the sum of the surfaces selected is 
greater than 70% of the distance traveled, then go to 
step 2. 

3. Select all perceived surfaces that are greater than 
300mm in length. If the sum of the surfaces selected is 
greater than 70% of the distance traveled, then go to 
step 2. 

4. Select all perceived surfaces that are greater than 
200mm in length (those less than 200mm are 
considered as too small for consideration). Go to step 
2. 

Step 2: Given the surfaces from (1), compute the boundary 
for the ASR. The idea here is to “smooth” those surfaces 
that are close together and leave those that are separated by 
a “significant” gap as they are.  

The next step is to split and merge the ASRs computed for 
the whole journey. This algorithm has been described in detail 
in [8]. Here we present a formal description of the algorithm: 

Algorithm #2: Computing final ASRs after completing a 
journey – a split and merge algorithm. 

1. Start with an initial set of points P0, which consists 
of n0 parts, P0 = {P0

0 ,…, P0
n0-1}. Each part P0

i is 

start 

end 



 

         

approximated by a function from F. Compute the 
initial residual error ε0

i for each part of P0.   

2. Split each part Pk
i where εk

i > ε1 into two parts Pk+1
j 

and Pk+1
j+1, compute the approximation and 

residuals εk+1
j, εk+1

j+. Repeat until εk
i  ≤ ε1 for all i = 

0,…,nk -1.  

3. Merge two adjacent parts Pk
i, P0

i+1 into one new 
part Pk+1

j if εk+1
j ≤ ε1. Repeat until merging is not 

possible. 

4. Shift the split point shared by two adjacent parts 
Pk

i, P0
i+ to left and right while leaving the overall 

number of parts fixed. Keep the split that reduces 
the overall error, repeat until no further changes 
occur. 

IV. RESULTS 
We apply the algorithms to compute ASRs for two journeys 

through the environment as shown in Fig. 1. The paths of the 
first journey (referred to as the forward journey) are as shown 
in Fig. 1. The second is the return journey and the paths taken 
by the robot are as shown in Fig. 6 (i.e. the robot traveling in 
the opposite direction). 

A. Results obtained for computing ASRs for paths  
There are two steps in this algorithm. For the first step, we 

show only the results obtained for the forward journey. Figs. 7-
10 show the number of surfaces selected at the four different 
iterations of the algorithm. 

 

 

Figure 6.  The paths taken by the robot in the reverse journey 
 

 

Note that the boundary on the left of a path is computed 
independently of the boundary on the right of a path. Table 1 
shows the actual number of iterations required to compute an 
ASR for each path taken in the forward journey. Path 1 denotes 
the starting path. The lesser number of iterations means that the 
larger surfaces perceived have provided sufficient coverage for 
computing the required boundary. 
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Figure 7.  Surfaces (> 700mm) selected for computing ASRs for paths. 
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Figure 8.  Surfaces (> 500mm) selected for computing ASRs for paths. 
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Figure 9.  Surfaces (> 300mm) selected for computing ASRs for paths. 
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Figure 10.  Surfaces (> 200mm) selected for computing ASRs for paths. 
 

Using the surfaces obtained in the above step, Fig. 10 
shows the ASRs computed for each path. 

B. Results obtained for computing final ASRs 
Figs. 12 and 13 show the final ASRs computed for the 

forward and return journeys, after applying the split and merge 
algorithm. Prior to split and merge, the number of ASRs 
created is equal to the number of paths taken to complete the 
journey. In the forward journey, 15 ASRs are computed. After 
applying the split and merge algorithm, the number of ASRs is 
reduced to 9 (see Fig. 12). 

 

 

TABLE I.  NUMBER  OF ITERATIONS REQUIRED TO SELECT THE 
SURFACES FOR COMPUTING ASR BOUNDARY FOR EACH PATH 

Paths Left Side Right Side 
1 1 4 
2 3 3 
3 4 4 
4 4 4 
5 2 3 
6 1 4 
7 4 2 
8 1 4 
9 3 3 

10 1 3 
11 4 4 
12 2 1 
13 3 4 
14 1 1 
15 1 4 
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Figure 11.  The ASRs computed for each path. The start and end of an ASR is 
indicated by a black dot. The surfaces shown denote boundaries of ASRs. 
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Figure 12.  The final ASRs computed for the forward journey. 
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Figure 13.   The final ASRs computed for the return journey. 
 

V. DISCUSSION 
The results obtained show a network of ASRs is computed. 

However, it is not often the case that the split is made at a point 
that humans think is reasonable.  However, it is interesting to 
observe that the same number of ASRs is produced for both the 
forward and return journey. This is not often the case. We have 
computed ASRs in the forward journey at different times and 
some of them showed very different ASRs are computed. This 
is within the expectation of the theory [1]. 

What do we do next? We have now successfully created a 
platform for testing cognitive mapping using a mobile robot 
with sonar sensors. Next, we want to show how such a map 
could be used for way-finding, a classic problem in cognitive 
mapping. In [9], we produced some early results for our robot 
to attempt finding its way home from its destination by using 
some commonsense reasoning strategies. We will continue to 
investigate how one applies commonsense reasoning to learn 
more about one’s environment starting with a network of 
ASRs. 
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