

1-4244-0025-2/06/$20.00 ©2006 IEEE RAM 2006

Computing a Network of ASRs using a Mobile Robot
Equipped with Sonar Sensors

Chee K. Wong, Wai K. Yeap, and Jochen Schmidt
Institute for Information Technology Research

Auckland University of Technology
Auckland, New Zealand

{chee.wong, wai.yeap, jochen.schmidt}@aut.ac.nz

Abstract— This paper presents a novel algorithm for
computing absolute space representations (ASRs) [1]-[2] for
mobile robots equipped with sonar sensors and an odometer. The
robot is allowed to wander freely (i.e. without following any fixed
path) along the corridors in an office environment from a given
start point to an end point. It then wanders from the end point
back to the start point. The resulting ASRs computed in both
directions are shown.

Keywords—robotics, cognitive mapping

I. INTRODUCTION
In recent years the idea of computing a network of local

(metrical) spaces as a representation of the environment that an
autonomous agent has experienced is gaining momentum. This
idea, commonly known as computing a hybrid map, is favored
by both the pragmatists (i.e. those researchers interested in
building mobile robots) and the theorists (i.e. those researchers
interested in developing computational theories of cognitive
maps).

Thrun [3] implemented a mobile robot that computes grid-
based maps of its environment using artificial neural networks
and naïve Bayesian integration. From the grid-maps, it
generates networks of empty spaces. The network
representation is used for fast planning and problem solving.
Tomatis, Nourbakhsh and Siegwart [4] offered a different
solution – they compute a topological network of open spaces
found in corridors and metric maps for rooms. The latter are
then attached to the appropriate nodes in the network. Open
spaces in corridors are distinguished by the presence of
physical corners separating them.

Kuipers and his team [5]-[6] recently investigated the use of
hybrid maps within the Spatial Semantic Hierarchy framework
[7] for cognitive mapping. They showed how a metric map
constructed for each local environment (which they called local
perceptual maps) is analyzed to generate a local topology
description which is then used to create a network of “places”.

In this paper, we present a different algorithm for
computing a hybrid map. The algorithm is specifically
designed for use on a mobile robot equipped with sonar sensors
and an odometer. Our approach and motivation in constructing
a hybrid map is different from those mentioned earlier. For
example, in Thrun’s approach, the network is computed after
having computed a detailed metric map of the environment.

The network is computed because the metric map is found to
be inefficient for planning purposes. The network is thus an
abstraction of the information made explicit in the metric maps;
it is not computed directly from the environment. In contrast,
Tomatis et al. computed the network representation first and
the representation played an important role in learning the
environment (especially in solving the localization problem).
However, their implementation is restricted to an environment
consisting of offices and corridors and the environment must be
learned by exploring corridors first and then offices.

Kuipers and his team introduced the “perceptual maps” to
ground the place representations described in his Spatial
Semantic Hierarchy. Their work is most similar to ours in that
we both are attempting to ground a theory of cognitive
mapping using a mobile robot. However, instead of generating
a local topology for each metric map, our metric map is
constructed only to provide a rough description of the shape of
the local environment. It has been argued that such a
representation forms the basis for subsequent learning of a
much richer description of each local environment [1]-[2].
Following [1]-[2], we continue to refer to such a representation
as an absolute space representation (ASR). Our hybrid map is
thus a network of ASRs; a link between two ASRs in the
network indicates that the individual has experienced moving
between the two local environments.

It is important to realize that computing a hybrid map
consisting of a network of ASRs does not enable one, in
general, to then use the map to move about successfully in the
environment, at least not initially. To do so, it requires the
individual to have successfully localized itself while computing
the map. For humans/animal cognitive mapping, this
localization problem is solved via repeated visits to a place and
via the enriching of each local environment with more
information other than improving the precision of the metric
map. Our primary goal is to develop a robotic platform for
testing theories of cognitive mapping. We are not just
interested in designing a robot that can compute a map of its
environment successfully for navigation purposes.

In this paper, we show how a robot equipped with sonar
sensors and an odometer can compute a network of ASRs.
Yeap and Jefferies [2] showed the importance of identifying
exits when computing ASRs. Exits are important because
through them, one explores the world. However, with the use
of sonar sensors, it is difficult for our robot to locate exists

reliably. Furthermore, given the poor readings, it is also better
to compute an ASR after moving through it rather than
computing one at the entrance of a new ASR. Our robot is thus
more like a blind person than a sighted person.

A new algorithm is proposed. The key ideas underlying our
new algorithm are as follows:

1. ASRs are computed for each path traversed – a path is
a single continuous movement of the robot through
the environment (i.e. without any stopping or turning);

2. The important exits found in a path are the exits at
both ends of it (i.e. given the poor sensing, one cannot
trust the side exits detected). This means that the
required ASR for path is the bounded region for the
path;

3. To compute the bounded region, preference is given
to using the large surfaces as opposed to the smaller
ones;

4. A split and merge algorithm [8] is then used to split or
combine ASRs obtained from single paths to produce
the final ASRs for the environment.

Section II describes the experiments we conducted to test
our new algorithm. Section III presents the news algorithms in
detail. Section IV presents the results obtained and section V
concludes the paper with a discussion of future work.

II. THE EXPERIMENT
The robot we use is a Pioneer 2 robot from ActivMedia and

it came with a ring of 8 sonar sensors. The robot is positioned
somewhere in the corridor in an office environment and is
allowed to explore the environment until it is told to stop. No
modification of the environment is done. That is, things that
already existed in the environment (such as rubbish bins,
flower pots, cabinets, etc.) remain there and doors leading into
offices are close or open depending on the time of the
experiment.

The environment used and one of the paths the robot took is
as shown in Fig. 1. It does not use a wall-following procedure
to navigate. It simply moves forward until it could not and then
it “looks” for an empty space to move forward again.
“Looking” is done using all the eight sensors but information
about the environment is sensed via the two side sensors. The
exploration algorithm can now be described as follows:

1. Move in a “straight” line and collect sonar data from
the sides;

2. Stop when an obstacle is encountered; and

3. Turn away from the obstacle but maintain a forward-
going direction

Figure 1. The environment used for the experiment and the path shown is

one of the paths taken by the robot. The total distance traveled is about 70m.

−1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

−1

−0.5

0

0.5

1

1.5

2

x 10
4

Figure 2. Initial surfaces perceived

III. ALGORITHMS FOR COMPUTING ASRS

Fig. 2 shows the initial surfaces computed from the sonar
readings obtained by the robot traversing the environment
along the path as shown in Fig. 1. As can be seen, there are too
many spurious surfaces. We pre-process the input by removing
outliers and insignificant surfaces. Fig. 3 shows the actual
surfaces used as input for computing ASRs.

start

end

−0.5 0 0.5 1 1.5 2 2.5

x 10
4

−5000

0

5000

10000

15000

Figure 3. Sonar readings used as input for computing ASRs

The algorithm for computing ASRs consists of two steps.
First it needs to compute an ASR after every single path
traversed and then split or combine these ASRs after
completing the journey to generate the final ASRs for the
whole environment traversed.

Fig. 4 shows four paths the robot took to travel down a
corridor. In the final analysis, the four ASRs produced will be
merged into a single ASR. This single ASR represents the ASR
computed for the whole corridor. ASRs computed for a single
path needs to be merged or split later because the environment
is sensed in a piecewise manner. Note that even for a robot
with vision or with more powerful sensing, these two steps are
also essential: the first step would compute an initial ASR from
the first view after entering a new local environment and the
second step would require updating the initial ASR with
information obtained later from subsequent views [2]. Fig. 5
shows a situation where a split is required.

To compute an ASR for a path, we first identify those
surfaces that could be part of the boundary for that path. Then
we compute the boundary itself. Since with sonar, one has
more confidence sensing the presence of a large surface than
that of a small surface, it is thus best to consider the larger
surfaces first. Furthermore, the large surfaces give one a strong
sense of where the boundary lies.

To select the surfaces for boundary consideration, we begin
with the surfaces that are considered as “large”. If there are a
sufficient number of them, we will use them to compute the
boundary. If not, other smaller surfaces are also used. The
algorithm that we have implemented can now be described as
follows (the threshold values used are intuitively chosen):

Algorithm #1: Computing an ASR for a path

Step 1: selecting surfaces – four possible iterations:

1. Select all perceived surfaces that are greater than
700mm in length. If the sum of the surfaces selected is
greater than 70% of the distance traveled, then go to
step 2.

Figure 4. The four inner circles mark the four paths the robot took to travel
down the corridor.

Figure 5. In this path, the robot generates a single ASR but in the final
analysis, this ASR will be split into two ASRs. The two circles indicate where

the split could happen.

2. Select all perceived surfaces that are greater than
500mm in length. If the sum of the surfaces selected is
greater than 70% of the distance traveled, then go to
step 2.

3. Select all perceived surfaces that are greater than
300mm in length. If the sum of the surfaces selected is
greater than 70% of the distance traveled, then go to
step 2.

4. Select all perceived surfaces that are greater than
200mm in length (those less than 200mm are
considered as too small for consideration). Go to step
2.

Step 2: Given the surfaces from (1), compute the boundary
for the ASR. The idea here is to “smooth” those surfaces
that are close together and leave those that are separated by
a “significant” gap as they are.

The next step is to split and merge the ASRs computed for
the whole journey. This algorithm has been described in detail
in [8]. Here we present a formal description of the algorithm:

Algorithm #2: Computing final ASRs after completing a
journey – a split and merge algorithm.

1. Start with an initial set of points P0, which consists
of n0 parts, P0 = {P0

0 ,…, P0
n0-1}. Each part P0

i is

start

end

approximated by a function from F. Compute the
initial residual error ε0

i for each part of P0.

2. Split each part Pk
i where εk

i > ε1 into two parts Pk+1
j

and Pk+1
j+1, compute the approximation and

residuals εk+1
j, εk+1

j+. Repeat until εk
i ≤ ε1 for all i =

0,…,nk -1.

3. Merge two adjacent parts Pk
i, P0

i+1 into one new
part Pk+1

j if εk+1
j ≤ ε1. Repeat until merging is not

possible.

4. Shift the split point shared by two adjacent parts
Pk

i, P0
i+ to left and right while leaving the overall

number of parts fixed. Keep the split that reduces
the overall error, repeat until no further changes
occur.

IV. RESULTS
We apply the algorithms to compute ASRs for two journeys

through the environment as shown in Fig. 1. The paths of the
first journey (referred to as the forward journey) are as shown
in Fig. 1. The second is the return journey and the paths taken
by the robot are as shown in Fig. 6 (i.e. the robot traveling in
the opposite direction).

A. Results obtained for computing ASRs for paths
There are two steps in this algorithm. For the first step, we

show only the results obtained for the forward journey. Figs. 7-
10 show the number of surfaces selected at the four different
iterations of the algorithm.

Figure 6. The paths taken by the robot in the reverse journey

Note that the boundary on the left of a path is computed
independently of the boundary on the right of a path. Table 1
shows the actual number of iterations required to compute an
ASR for each path taken in the forward journey. Path 1 denotes
the starting path. The lesser number of iterations means that the
larger surfaces perceived have provided sufficient coverage for
computing the required boundary.

−0.5 0 0.5 1 1.5 2 2.5

x 10
4

−5000

0

5000

10000

15000

Figure 7. Surfaces (> 700mm) selected for computing ASRs for paths.

−0.5 0 0.5 1 1.5 2 2.5

x 10
4

−5000

0

5000

10000

15000

Figure 8. Surfaces (> 500mm) selected for computing ASRs for paths.

start

start

end

end

−0.5 0 0.5 1 1.5 2 2.5

x 10
4

−5000

0

5000

10000

15000

Figure 9. Surfaces (> 300mm) selected for computing ASRs for paths.

−0.5 0 0.5 1 1.5 2 2.5

x 10
4

−5000

0

5000

10000

15000

Figure 10. Surfaces (> 200mm) selected for computing ASRs for paths.

Using the surfaces obtained in the above step, Fig. 10
shows the ASRs computed for each path.

B. Results obtained for computing final ASRs
Figs. 12 and 13 show the final ASRs computed for the

forward and return journeys, after applying the split and merge
algorithm. Prior to split and merge, the number of ASRs
created is equal to the number of paths taken to complete the
journey. In the forward journey, 15 ASRs are computed. After
applying the split and merge algorithm, the number of ASRs is
reduced to 9 (see Fig. 12).

TABLE I. NUMBER OF ITERATIONS REQUIRED TO SELECT THE
SURFACES FOR COMPUTING ASR BOUNDARY FOR EACH PATH

Paths Left Side Right Side
1 1 4
2 3 3
3 4 4
4 4 4
5 2 3
6 1 4
7 4 2
8 1 4
9 3 3

10 1 3
11 4 4
12 2 1
13 3 4
14 1 1
15 1 4

0 0.5 1 1.5 2

x 10
4

−5000

0

5000

10000

15000

Figure 11. The ASRs computed for each path. The start and end of an ASR is
indicated by a black dot. The surfaces shown denote boundaries of ASRs.

start

start

start

end

end

end

0 0.5 1 1.5 2

x 10
4

−5000

0

5000

10000

15000

Figure 12. The final ASRs computed for the forward journey.

−20000 −15000 −10000 −5000 0

−1

−0.5

0

0.5

1

x 10
4

Figure 13. The final ASRs computed for the return journey.

V. DISCUSSION
The results obtained show a network of ASRs is computed.

However, it is not often the case that the split is made at a point
that humans think is reasonable. However, it is interesting to
observe that the same number of ASRs is produced for both the
forward and return journey. This is not often the case. We have
computed ASRs in the forward journey at different times and
some of them showed very different ASRs are computed. This
is within the expectation of the theory [1].

What do we do next? We have now successfully created a
platform for testing cognitive mapping using a mobile robot
with sonar sensors. Next, we want to show how such a map
could be used for way-finding, a classic problem in cognitive
mapping. In [9], we produced some early results for our robot
to attempt finding its way home from its destination by using
some commonsense reasoning strategies. We will continue to
investigate how one applies commonsense reasoning to learn
more about one’s environment starting with a network of
ASRs.

REFERENCES
[1] W.K. Yeap, “Towards a computational theory of cognitive maps”,

Artificial Intelligence, vol. 34, 1988, pp. 297-360.
[2] W.K. Yeap, and M. Jefferies, “Computing a representation of the local

environment”. Artificial Intelligence, vol. 107, 1999, pp. 219-263.
[3] S. Thrun, “Learning maps for indoor mobile robot navigation”, Artificial

Intelligence, vol. 99, 1998, pp. 21-71.
[4] N. Tomatis, I. Nourbakhsh, and R. Siegwart, “Hybrid simultaneous

localization and map building: A natural integration of topological and
metric,” Robotics and Autonomous Systems, vol. 44, 2003, pp. 3-14.

[5] B. Kuipers, J. Modayil, P. Beeson, M. MacMahon, and F. Savelli,
“Local metrical and global topological maps in the hybrid spatial
semantic hierarchy”, in Proc. IEEE Int. Conf. on Robotics and
Automation, 2004, pp. 4845-4851.

[6] P. Beeson, M. MacMahon, J. Modayil, J. Provost, F. Savelli, and B.
Kuipers, “Exploiting local perceptual models for topological map
building”, in IJCAI-2003 Workshop on Reasoning with Uncertainty in
Robotics (RUR-03), Acapulco, Mexico, August 2003, pp, 15-22.

[7] B. Kuipers, “The spatial semantic hierarchy”, Artificial Intelligence, vol.
119, 2000, pp. 191-233.

[8] J. Schmidt, C.K. Wong, and W.K. Yeap, “A split and merge approach to
metric-topological map-building”, submitted to the 18th International
Conference on Pattern Recognition, Hong Kong, August 2006.

[9] C.K. Wong, W.K. Yeap, and M. Sapiyan, “A mobile robot that maps
naively but plans intelligently”, in Proc. of the Artificial Intelligence and
Application Conference, 2005, pp. 562-567.

start

start

end

end

