
Localisation and Mapping with a Mobile

Robot Using Sparse Range Data

Jochen Schmidt, Chee K. Wong, and Wai K. Yeap

Centre for Artificial Intelligence Research
Auckland University of Technology, Auckland, New Zealand
jochen.schmidt@aut.ac.nz, chee.wong@aut.ac.nz, wai.yeap@aut.ac.nz

Summary. We present an approach for indoor mapping and localisation using
sparse range data, acquired by a mobile robot equipped with sonar sensors. The
paper consists of two main parts. First, a split and merge based method for dividing
a given metric map into distinct regions is presented, thus creating a topological
map in a metric framework. Spatial information extracted from this map is then
used for self-localisation on the return home journey. The robot computes local con-
fidence maps for two simple localisation strategies based on distance and relative
orientation of regions. These local maps are then fused to produce overall confidence
maps.

1 Introduction

Mapping and self-localisation play an important role when using mobile robots
for the exploration of an unknown environment. Particularly for indoor appli-
cations, where a 2-D map is usually sufficient, geometric maps obtained from
time-of-flight devices, such as laser or sonar, are widely used. In this paper,
we present an algorithm for mapping and localisation using sparse range data
acquired by only two sonars, and show that the robot can localise itself even
with a map that is highly inaccurate in metric terms. In the first part of the
paper a method for dividing a given metric map into distinct regions, e. g.,
corridors or rooms is presented, thus creating a metric-topological map. As we
use only two sonar sensors, the available range data are very sparse, therefore
making the map highly inaccurate. We will show that these data can nev-
ertheless be used for self-localisation. Our work is inspired by [11], where a
cognitive map is regarded as a network of local spaces, each space described by
its shape and its exits to other local spaces. Related approaches can be found,
e. g., in [4], which is a hybrid approach that combines topological and metric
maps. In [8], topological maps are constructed from grid maps using Voronoi
diagrams; the grid maps are split into regions and gateways are detected. In
contrast to these methods, our approach is based on a region split and merge

2 Jochen Schmidt, Chee K. Wong, and Wai K. Yeap

algorithm [5]. Many algorithms have been developed to solve the simultane-
ous mapping and localisation problem (SLAM) for mobile robots. For some
examples of recent work in this area see [2] and the references therein. The
approach followed in this paper is different, as we do not solve the SLAM prob-
lem, but simulate a cognitive mapping process instead. The latter refers to
the process in which humans and animals learn about their environment. We
implemented two localisation strategies using both distance and orientation
information extracted from the metric-topological map. We show how local
confidence maps (location estimate of the robot) can be computed, and how
to fuse them. For more details and experimental results refer to our earlier
work [7, 10].

2 Mapping

The mapping process described in this section is used in two ways: First,
the robot explores its environment and collects data. When this is finished,
all acquired data are processed; the result of this initial mapping stage will
be called the original map further on. This is the map the robot will use for
returning home (origin of original map). An overview over the map-processing
algorithm will be given in the following. A more detailed evaluation of the
algorithm including the influence of the parameters involved is given in [6].

For data acquisition we use a mobile robot equipped with an odometer
and two sonar sensors located on the left and right side. Note that the algo-
rithms presented here are not restricted to sparse data or that type of sensors;
the performance will be even better when more range data are available. The
robot acquires sonar readings while moving on a “straight” line (we are not
concerned about drift compensation or correction) until it runs into an ob-
stacle. At this point an obstacle avoidance algorithm is used, after which the
robot can wander straight on again. A single one of these straight movements
will be called robot path throughout this paper. Based on the raw sonar sen-
sor readings we build a geometric map containing the robot movement path
as well as linear surfaces approximated from the sonar data. The goal is to
split the map into distinct regions, e. g., corridors and rooms. Splitting is done
along the robot movement path, using an objective function that computes
the quality of a region, based on criteria such as the average room width (cor-
ridors are long and narrow compared to rooms) and overall direction (e. g., a
corridor is separated from another one by a sharp bend in the wall). The basis
of the map-processing algorithm is the well-known split and merge method [5].
In pattern recognition this algorithm is traditionally used for finding piecewise
linear approximations of a set of contour points. Other applications include
segmentation of image regions given a homogeneity criterion, e. g., with re-
spect to colour or texture.

Before a region split and merge algorithm on the geometric map can be
applied, it is necessary to create an initial split of the map. The easiest way

Localisation and Mapping with a Mobile Robot Using Sparse Range Data 3

to do so is to treat the whole map as a single large region defined by the
start and end points of the journey. After this step, the actual division of
the map into distinct regions is performed based on a split and merge that
uses a residual error function g(Si,Sj) which compares two regions Si and
Sj and computes the homogeneity of the two regions (low values of g(Si,Sj)
means homogeneous, high values very inhomogeneous). This function is used
during the split phase for deciding whether a region Sk

i will be split again at
a given position into two new regions Sk+1

j and Sk+1
j+1 . If the homogeneity is

above a given threshold θr, the region will be split again. When no further
splitting is possible, the algorithm tries to merge adjacent regions (which were
not necessarily generated by a single split) by checking whether the created
region is still homogeneous. The basic idea is to use the average width of a
region in the map as a criterion for splitting, as a width change resembles a
changing environment, e. g., a transition from a corridor to a big room. The
homogeneity (residual) function used is:

g(Si,Sj) =
max{fw(Si), fw(Sj)}

min{fw(Si), fw(Sj)}
+ srr(Si,Sj) (1)

where fw(Si) is the average width of region Si, and r(Si,Sj) is a regularisation
term that takes care of additional constraints during splitting. The average

width is given by fw(Si) =
ASi

lSi

, where ASi
is the area of region Si, and lSi

is its length. In practice, the computation of both needs a bit of attention.
Particularly the definition of the length of a region is not always obvious,
but can be handled using the robot movement paths, which are part of each
region. The length lSi

is then defined by the length of the line connecting the
start point of the first robot path of a region and the end point of the last path
of the region. This is a simple way to approximate a region’s length without
much disturbance caused by zig-zag movement of the robot during mapping.

Regarding the area computation, the gaps contained in the map have to
be taken into account, either by closing all gaps, or by using a fixed max-
imum distance for gaps. Both approaches have their advantages as well as
drawbacks, e. g., closing a gap is good when it originated from missing sensor
data, but may distort the splitting result when the gap is an actual part of the
environment, thus enlarging a room. We decided to use a combined approach,
i. e., small gaps are closed in a pre-processing step already, while large ones
are treated as distant surfaces.

The regularisation term r(Si,Sj) ensures that the regions do not get too
small. In contrast to a threshold, which is a clear decision, a regularisation
term penalises small regions but still allows to create them if the overall quality
is very good. We use a sigmoid function that can have values between −1 and
0, centred at n, which is the desired minimum size of a region:

r(Si,Sj) =
1

1 + exp
(

−
min{ASi

,ASj
}

Amax

+ n
) − 1 . (2)

4 Jochen Schmidt, Chee K. Wong, and Wai K. Yeap

The exponent is basically the area of the smaller region in relation to the
maximum area Amax of the smallest allowed region. This term only has an
influence on small regions, making them less likely to be split again, while it
has virtually no influence when the region is large, as the sigmoid reaches 0.

The influence of the term can be controlled using the factor sr in (1),
which is given by sr = sθr, where 0 ≤ s ≤ 1 is set manually and defines the
percentage of the threshold θr mentioned earlier that is to be used as a weight.

3 Localisation

Once the original map has been generated, we instruct the robot to return
home based on the acquired map. Each time the robot stops on its return
journey (because of an obstacle), it performs a map processing as described
in Sect. 2, making a new metric-topological map available at each intermediate
stop that can be used for localisation.

In the following, we describe two strategies for localisation, and a data
fusion algorithm that allows for an overall position estimate computed from
the individual localisation methods. Each method computes a local confidence
map that contains a confidence value for each region of the original map. All
local confidence maps are then fused into a single global one.

The fusion of local confidence maps, which may have been generated by
different robot localisation methods with varying reliability, is based on the
idea of Democratic Integration introduced in [9]. It was developed for the pur-
pose of sensor data fusion in computer vision and computes confidence maps
directly on images. The original method has been extended and embedded
into a probabilistic framework in [1, 3], still within the area of machine vision.
We extend the original approach in a way that we do not use images as an
input, but rather generate local confidence maps using various techniques for
robot localisation. A main advantage of this approach is that the extension to
more than two strategies is straightforward. Each local confidence map con-
tains a confidence value between 0 and 1 for each region of the original map.
As in [9] these confidence values are not probabilities, and they do not sum
up to one; the interval has been chosen for convenience, and different intervals
can be used as desired.

The actual fusion is straightforward, as it is done by computing a weighted
sum of all local confidence maps. The main advantage of using democratic in-
tegration becomes visible only after that stage, when the weights get adjusted
dynamically over time, dependent on the reliabilities of the local map. Given
M local confidence maps cloci(t) ∈ IRN (N being the total number of regions
in the original map) at time t generated using different strategies, the global

map cglob(t) is computed as cglob(t) =
∑M−1

i=0 wi(t)cloci(t), where wi(t) are
weighting factors that add up to one. An estimate of the current position of
the robot with respect to the original map can now be computed by deter-
mining the largest confidence value in cglob(t). Its position b in cglob(t) is the

Localisation and Mapping with a Mobile Robot Using Sparse Range Data 5

index of the region that the robot believes it is in. The confidence value cglobb

at that index gives an impression about how reliable the position estimate is
in absolute terms, while comparing it to the other ones shows the reliability
relative to other regions.

In order to update the weighting factors, the local confidence maps have
to be normalised first; they are given by c

′
loci

(t) = 1
N

cloci(t). The idea when
updating the weights is that local confidence maps that provide very reliable
data get higher weights than those which are unreliable. Different ways for
determining the quality of each local confidence map are presented in [9].
We use the normalised local confidence values at index b, which has been
determined from the global confidence map as shown above, i. e., the quality
qi(t) of each local map cloci(t) is given by c′locb

(t). Normalised qualities q′i(t)

are computed by q′i(t) = qi(t)
PM−1

j=0
qj(t)

. The new weighting factors wi(t + 1) can

now be computed from the old ones: wi(t + 1) = wi(t) + 1
t+1 (q′i(t) − wi(t)).

Using this update equation and the normalisation of the qualities ensures that
the sum of the weights equals one at all times [9].

Two strategies for computing local confidence maps are described below,
one based on distance travelled, the other based on orientation information.
Depending on the sensors used, more sophisticated ones can be added to en-
hance localisation accuracy. A main feature of data fusion is that each strategy
taken on its own may be quite simple and not very useful for localisation; it
is the combination of different strategies which makes localisation possible.

The first strategy is based on using the distance the robot travelled from
its return point to the current position. Note that neither do we care about an
exact measurement, nor do we use the actual distance travelled as provided
by odometry. Using the odometry data directly would result in very different
distances for each journey, as the robot normally moves in a zig-zag fashion.
Instead we use distance information computed from the region splitting of
the maps, i. e., region length, which is defined by the distance between the
“entrance” and the “exit” (split points) the robot used when passing through
a particular region. The basic idea is to compare the distance d, measured
in region lengths taken from the intermediate map computed on the return
journey, to the lengths taken from the original map computed during the
mapping process.

The confidence for each region in the local confidence map cDist depends
on the overall distance d travelled on the return journey; the closer a region
is to this distance from the origin, the more likely it is the one the robot is
in currently. We decided to use a Gaussian to model the confidences for each
region, the horizontal axis being the distance travelled in mm. The Gaussian
is centred at the current overall distance travelled d. Its standard deviation
σ is dependent on the distance travelled, and was chosen as σ = 0.05d. A
Gaussian was chosen not to model a probability density, but for a number
of reasons making it most suitable for our purpose: It allows for a smooth
transition between regions, and the width can be easily adjusted by altering

6 Jochen Schmidt, Chee K. Wong, and Wai K. Yeap

the standard deviation. This is necessary as the overall distance travelled
gets more and more unreliable (due to slippage and drift) the farther the
robot travels. The confidence value for a region is determined by sampling the
Gaussian at the position given by the accumulated distances from the origin
(i. e., where the robot started the homeward journey) to the end of this region.
After a value for each region is computed, the local confidence map cDist is
normalised to the interval [0; 1].

The second strategy is based on using relative orientation information.
We define the direction of a region as the direction of the line connecting the
“entrance” and “exit”. Certainly this direction information varies every time
the robot travels through the environment, but the overall shape between ad-
jacent regions is relatively stable. Therefore, angles between region directions
can be used as a measure of the current position of the robot. It has the ad-
vantage that angles between adjacent region directions are a local measure,
thus keeping the influence of odometry errors to a minimum.

Firstly, all angles α1, . . . , αN−1 between adjacent regions in the original
map are computed. In the re-mapping process while going home, new regions
are computed in the new map based on data gathered while the robot travels.
Using the direction information contained in this map, the angle β between the
current region and the previous one can be computed. “Comparing” this angle
to all angles of the original map gives a clue (or many) for the current location
of the robot, resulting in a local confidence map cDiri = 1

2 (cos |αi − β| + 1).
This results in high values for similar angles and low values for dissimilar ones.

4 Experimental Results

The main features of the office environment where we conducted the experi-
ments are corridors, which open into bigger areas at certain locations, doors,
and obstacles like waste paper baskets in various positions. The acquisition of
the original maps and the experiments for using the maps for localisation was
done on different days, so the environment was different for each experiment
(e. g., doors open/closed). We used an Activmedia Pioneer robot, equipped
with an odometer and eight sonar sensors; only the two side sensors were
used in order to obtain sparse range data.

Figure 1 shows four maps, including the locations of split points marked
by dots. These are located on a set of connected lines that resemble the path
the robot took while mapping the environment. To the left and right of that
path, the (simplified) surfaces representing the environment can be seen. For
splitting purposes, gaps were treated as distant surfaces, having a distance of
6m from the position of the robot. The robot started the mapping process at
the origin. All maps were processed using the same parameter values, θr = 2.0
and s = 0.1; the desired minimum size of a region was 1.5m. We found that
the overall robustness to changes in the parameters is quite high, i. e., the
choice of the actual values is usually noncritical; for an evaluation see [6]. It

Localisation and Mapping with a Mobile Robot Using Sparse Range Data 7

0 0.5 1 1.5 2

x 10
4

−5000

0

5000

10000

15000

(a)
−20000 −15000 −10000 −5000 0 5000

−1

−0.5

0

0.5

1

x 10
4

(b)

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2

x 10
4

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

x 10
4

(c)

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1

x 10
4

0

0.5

1

1.5

2

2.5

3

3.5

4

x 10
4

(d)

Fig. 1. (a) original map Experiment 1, (b) map generated during homeward journey
Experiment 1, (c) original map Experiment 2, (d) homeward journey Experiment 2.
Black dots indicate split points, robot movement starts at the origin.

can be observed that the splits are located at the desired positions, i. e., where
the environment changes, either from corridor to big room or at sharp bends in
the corridor. The maps shown in Figs. 1(a) and 1(b) were generated from the
mapping and going home processes respectively for Experiment 1; the Figs.
1(c) and 1(d) are the maps generated from the mapping and going home pro-
cesses respectively for Experiment 2. Comparing the maps generated during
mapping and going home highlights the difficulty in using these maps directly
for localisation. Each time, the robot goes through the same environment, it
will generate different representations due to sensory inaccuracies.

Figure 2 shows two confidence maps for each experiment computed at
different locations during the return home journey. The light dotted lines

8 Jochen Schmidt, Chee K. Wong, and Wai K. Yeap

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a)
0 1 2 3 4 5 6 7 8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b)

0 1 2 3 4 5 6 7 8 9 10 11 12 13
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c)
0 1 2 3 4 5 6 7 8 9 10 11 12 13

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(d)

Fig. 2. Confidence maps at different locations. (a),(b) Experiment 1. (c),(d) Exper-
iment 2. The plots show: distance (light dotted), relative orientation (dark dashed),
overall confidence (solid). Horizontal axis: region index; vertical axis: confidence.

represent the region estimate using the region length information (distance
method) and the dark dashed lines depict the region estimate using the angles
between regions (relative orientation method). The solid line is the overall
region estimate. The confidence maps in Fig. 2 illustrate different situations
during localisation. A narrow peak for the overall confidence signifies the robot
being very confident of being in a particular region. A wider confidence curve
shows that the robot is at the transition from one region to another, as more
than one region has a high confidence value, and the robot is unsure which
of the regions it is in. Comparisons of the estimated position to the actual
position have shown that the localisation is usually correct, with possible
deviations of ±1 in areas where the regions are extremely small.

Localisation and Mapping with a Mobile Robot Using Sparse Range Data 9

5 Conclusion

We have presented methods for mapping and localisation using sparse range
data. An initial metric map obtained from sonar sensor readings is divided
into distinct regions, thus creating a metric-topological map. A split and merge
approach has been used for this purpose, based on an objective function that
computes the quality of a region. Based on spatial information derived from
these maps, we showed how simple localisation strategies can be used to com-
pute local confidence maps that are fused into a single global one, which
reflects the confidence of the robot being in a particular region. The fusion
can easily be extended by more localisation strategies or additional sensors.

References

1. J. Denzler, M. Zobel, and J. Triesch. Probabilistic Integration of Cues From
Multiple Cameras. In R. Würtz, editor, Dynamic Perception, pages 309–314.
Aka, Berlin, 2002.

2. C. Estrada, J. Neira, and J. D. Tardos. Hierarchical SLAM: Real-Time Accurate
Mapping of Large Environments. IEEE Trans. on Robotics, 21(4):588–596, 2005.

3. O. Kähler, J. Denzler, and J. Triesch. Hierarchical Sensor Data Fusion by Prob-
abilistic Cue Integration for Robust 3-D Object Tracking. In IEEE Southwest
Symp. on Image Analysis and Interpretation, pages 216–220, Nevada, 2004.

4. B. Kuipers, J. Modayil, P. Beeson, M. MacMahon, and F. Savelli. Local Metrical
and Global Topological Maps in the Hybrid Spatial Semantic Hierarchy. In Int.
Conf. on Robotics and Automation, pages 4845–4851, New Orleans, LA, 2004.

5. T. Pavlidis and S. L. Horowitz. Segmentation of Plane Curves. IEEE Trans. on
Computers, C-23:860 – 870, 1974.

6. J. Schmidt, C. K. Wong, and W. K. Yeap. A Split & Merge Approach to
Metric-Topological Map-Building. In Int. Conf. on Pattern Recognition (ICPR),
volume 3, pages 1069–1072, Hong Kong, 2006.

7. J. Schmidt, C. K. Wong, and W. K. Yeap. Mapping and Localisation with Sparse
Range Data. In S.C. Mukhopadhyay and G. Sen Gupta, editors, Proceedings of
the Third International Conference on Autonomous Robots and Agents (ICARA
2006), pages 497–502, Palmerston North, New Zealand, 2006.

8. S. Thrun. Learning Metric-Topological Maps for Indoor Mobile Robot Naviga-
tion. Artificial Intelligence, 99(1):21–71, 1998.

9. J. Triesch and Ch. von der Malsburg. Democratic Integration: Self-Organized
Integration of Adaptive Cues. Neural Computation, 13(9):2049–2074, 2001.

10. C. K. Wong, J. Schmidt, and W. K. Yeap. Using a Mobile Robot for Cognitive
Mapping. In International Joint Conference on Artificial Intelligence (IJCAI),
pages 2243–2248, Hyderabad, India, 2007.

11. W. K. Yeap and M. E. Jefferies. Computing a Representation of the Local
Environment. Artificial Intelligence, 107(2):265–301, 1999.

