
Using Quaternions for Parametrizing 3–D Rotations in Unconstrained
Nonlinear Optimization

J. Schmidt and H. Niemann

Chair for Pattern Recognition (Informatik 5), University of Erlangen–Nuremberg
Martensstr. 3, 91058 Erlangen, Germany

Email: {jschmidt,niemann}@informatik.uni-erlangen.de

Abstract

In this paper we address the problem of using
quaternions in unconstrained nonlinear optimiza-
tion of 3-D rotations. Quaternions representing ro-
tations have four elements but only three degrees
of freedom, since they must be of norm one. This
constraint has to be taken into account when ap-
plying e. g. the Levenberg-Marquardt algorithm, a
method for unconstrained nonlinear optimization
widely used in computer vision. We propose an
easy to use method for achieving this. Experi-
ments using our parametrization in photogrammet-
ric bundle-adjustment are presented at the end of the
paper.

1 Introduction

Many tasks in computer vision require the estima-
tion of 3-D rotation matrices, usually using a lin-
ear algorithm first and a nonlinear refinement after-
wards. Examples include camera calibration [2, 3]
or photogrammetric bundle-adjustment [4, 6, 10,
3] in structure-from-motion applications. An of-
ten used [4, 6, 10, 3] method for doing nonlin-
ear refinement is the Gauss-Newton algorithm with
Levenberg-Marquardt extension [3, 11], which is an
iterative algorithm for unconstrained optimization.
Since a 3×3 rotation matrix has 9 elements but only
3 degrees of freedom (DOF), other parametriza-
tions are used for rotations in 3-D: Euler angles,
axis/angle representation, and quaternions.

Quaternions have advantages in many applica-
tions, they are used for example in computer vision
for a numerically stable estimation of rotation from
an essential matrix [2], or in computer graphics for
interpolation between two given rotations, since the
use of quaternions yields smooth movements, while

Euler angles do not [16].
This contribution focuses on quaternions, but

because of the strong dependencies between
axis/angle representation and quaternions a short re-
view of the other two parametrizations is given first.

2 Parametrizing Rotations

2.1 Fair Parametrizations

The term fair parametrization was introduced by
Hornegger and Tomasi in [8]. A parametrization
is called fair, if it does not introduce more numer-
ical sensitivity than inherent to the problem itself.
This is guaranteed, if any rigid transformation of
the space to be parametrized results in an orthog-
onal transformation of the parameters. Since this
is a rather general definition, it is not restricted to
parametrizing rotations, but in [8] the parametriza-
tion of camera motion is treated.

2.2 Euler Angles

Representing a rotation by Euler angles is proba-
bly the best known parametrization. A rotation ma-
trix can be built from three matrices representing
rotations around the axes of the coordinate-system,
where each rotation is defined by an angle. As
matrix multiplication is not commutative, the Eu-
ler angle representation is not unique, meaning that
a permutation of the order of the rotations around
the axes yields different Euler angles. Probably the
most important drawback of this parametrization is
the existence of so-called gimbal lock singularities,
where one DOF is lost, i. e. two of the three Euler
angles belong to the same DOF. For a deeper dis-
cussion see [16].

Since Euler angles are not a fair parametrization
of rotations according to [8] either and thus are nu-

VMV 2001 Stuttgart, Germany, November 21–23, 2001

PSfrag replacements
θ

axis a

Figure 1: Rotation around an axis a by angle θ.

merically instable for estimating rotations, we do
not discuss them any further.

2.3 Axis/Angle Representation

The parametrization most widely used in bundle-
adjustment [6, 7, 13] is the axis/angle representa-
tion. It is a fair parametrization in the sense of [8].

An arbitrary rotation R ∈ IR3×3 can be repre-
sented as a rotation around one axis a ∈ IR3 by the
angle θ (see Figure 1). Since only the direction of
the rotation axis a is of importance, a has only 2
DOF. Hence axis and angle can be combined into a
single 3-vector ω, its direction giving the rotation
axis and its length the rotation angle:

θ = |ω|, a =
ω

|ω|
. (1)

Computing a rotation matrix R from ω can be done
by using the formula of Rodrigues [2]:

R = e
[ω]× = I 3+

sin θ

θ
[ω]×+

1 − cos θ

θ2
[ω]2× ,

(2)
where [ω]× is the following antisymmetric matrix:

[ω]× =

2

4

0

@

ω1

ω2

ω3

1

A

3

5

×

=

0

@

0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

1

A .

(3)
The computation of axis and angle from a rota-

tion matrix R can be done as follows [15]: Eigen-
decomposition of R yields the three Eigen-values 1
and cos θ ± i sin θ. The axis a is the Eigen-vector
corresponding to the Eigen-value 1. The angle θ can
now be calculated from one of the remaining Eigen-
values. The consistency of the direction of the axis
and the angle can be checked by inserting them into
equation (2).

2.4 Quaternions

Quaternions are numbers, in a certain sense sim-
ilar to complex numbers: Instead of using only
one imaginary part, three are introduced. More on

quaternions in computer vision can be found in [2].
They are a fair parametrization in the sense of [8].

A quaternion h is defined as follows:

h = w+xi+yj+zk, w, x, y, z ∈ IR , (4)

where w is the real part and x, y, z are the imagi-
nary parts. Multiplication and summation are done
component-wise, with

i2 = j2 = k2 = −1 ,

ij = −ji = k ,

jk = −kj = i ,

ki = −ik = j .

(5)

Often a quaternion is written as a 4-tupel h =
(w, x, y, z) or h = (w, v), where v is a 3-vector
containing the imaginary parts. In contrast to com-
plex numbers, the commutative law of multiplica-
tion is not valid, i. e. h1h2 6= h2h1. Similar to
complex numbers, a conjugate quaternion is defined
as h = w−xi−yj− zk. The norm of a quaternion
h is |h | =

p

h · h =
p

w2 + x2 + y2 + z2. For
unit quaternions (|h | = 1), the inverse of multipli-
cation equals the conjugate: h−1 = h .

Just as the multiplication of two unit complex
numbers defines a rotation in 2-D, a multiplication
of two unit quaternions yields a rotation in 3-D. Let
p be a 3-D point to be rotated, a a rotation axis
with |a | = 1, and θ the angle of rotation around
this axis as in Section 2.3. Define the following two
quaternions:

h =

„

cos
θ

2
, sin

θ

2
· a

«

,

p
′ = (0, p) .

(6)

Then
p

′

rot = h · p ′ · h , (7)

where p ′

rot is the quaternion corresponding to the
rotated point.

Note that the representation of a rotation as a
quaternion (and also as axis/angle) is not unique,
since the two quaternions h1 =

`

cos θ
2
, sin θ

2
· a
´

and h2 =
`

− cos θ
2
,− sin θ

2
· a
´

define the same
rotation. This is a direct result of the axis/angle rep-
resentation, because a rotation around an axis a by
an angle θ is the same as a rotation around the axis
−a by the angle 2π − θ. Which one of the two
quaternions is used does not matter, but one has to

666

be careful when measuring the distance of two ro-
tations (e. g. for describing the calibration error) by
the distance between quaternions.

The computation of a quaternion from a rotation
matrix is done using the axis/angle representation
as described in equation (6). The computation of a
rotation matrix R from a quaternion can be done as
follows [2]:

R =
`

r1 r 2 r 3

´

, (8)

where

r 1 =

0

@

h2
0 + h2

1 − h2
2 − h2

3

2(h1h2 + h0h3)
2(h1h3 − h0h2)

1

A ,

r 2 =

0

@

2(h1h2 − h0h3)
h2

0 − h2
1 + h2

2 − h2
3

2(h2h3 + h0h1)

1

A ,

r 3 =

0

@

2(h1h3 + h0h2)
2(h2h3 − h0h1)

h2
0 − h2

1 − h2
2 + h2

3

1

A .

(9)

3 Unconstrained Nonlinear Optimiza-
tion

Nonlinear Optimization is usually performed after
a linear step, i. e. an initial estimation of the ro-
tation matrix exists already. The corresponding
quaternion is denoted here as h0. When using an
unconstrained nonlinear optimization method like
the Levenberg-Marquardt algorithm, the main prob-
lem is that a quaternion representing a rotation
has four elements but only 3 DOF because of the
norm–1 constraint. This has to be considered dur-
ing the optimization process. Additionally a min-
imal parametrization is desired because of compu-
tation time, especially if we consider the problem
of bundle-adjustment where many 3-D rotations are
optimized simultaneously.

3.1 Possible Solutions

At the beginning of this section we will discuss
some possible solutions for this problem, after that
our approach is described in detail.

Use all four elements of the quaternion. The
simplest way to do nonlinear optimization using

quaternions is to ignore the norm–1 constraint com-
pletely and change all four elements. After op-
timization, the resulting quaternion is forced to
norm 1. This approach has two drawbacks: On the
one hand, four parameters are changed where three
would be sufficient, on the other hand the norm
changes during optimization, while it would be de-
sired to be preserved.

Lagrange. A standard way to deal with con-
straints is the introduction of Lagrangian multipli-
ers. Therefore the function to be optimized must
be extended by a term of the form λi(h

T
i h i − 1).

This is not a problem in principle, but has the dis-
advantage that the number of parameters to be es-
timated increases from four to five, because of the
Lagrangian multipliers λi. In bundle-adjustment,
where a whole image sequence is processed at once
and thus a rotation has to be computed for each
image, this results in additional computation time
needed.

One possibility would be to fix the λi before op-
timization in order regularize the problem instead of
estimating them. This approach punishes deviations
from the norm–1 constraint by increasing the resid-
ual. An exact compliance (within numerical pre-
cision) with the constraint however is not ensured,
and additionally the question arises to what values
to fix the λi.

Use only the imaginary parts of the quaternion.
This parametrization is used in [1], but not for non-
linear optimization. Three parameters κx, κy, and
κz are changed here, from which the quaternion h

is calculated as

h =

 r

1 −
(κ2

x + κ2
y + κ2

z)

4
,
κx

2
,
κy

2
,
κz

2

!

.

(10)
The advantage is that only the minimum number of
three parameters is used. But it has to be made sure
that the changes are done in a way that the radi-
cand is always positive, which cannot be guaran-
teed when performing Levenberg-Marquardt opti-
mization. This is why we do not use this approach.

Conclusion: A parametrization has to be found,
that:

• is minimal, i. e. it uses only three parameters,

666

PSfrag replacements h0
hZ

hv

O
θ

v

Figure 2: Parametrization of rotation by quater-
nions: The tangential hyperplane touches the unit
sphere S

3 in h0. hv is the quaternion lying in this
hyperplane, hZ is the resulting quaternion.

• the three parameters can be changed arbitrarily
by the optimization algorithm,

• the resulting quaternion has always norm 1.
In the following we present a technique for accom-
plishing this.

3.2 New Approach

We now describe a way for parametrizing changes
in rotation starting at an initial solution obtained
e. g. by a linear method. We will call that starting
quaternion h0 the operating point. All quaternions
of norm 1 lie on the unit sphere in IR4, i. e. the S

3.
The goal is to use three parameters for giving the di-
rection and distance of the resulting quaternion on
this sphere. Therefore we use the shortest connec-
tion between two points on a sphere, i. e. a great cir-
cle. In the following we will show how this can be
accomplished. Figure 2 shows the general setting.

For describing a movement on the sphere start-
ing at h0 we use a vector v4 ∈ IR4 lying in the
tangential hyperplane that touches the sphere in h 0.
This hyperplane is a subspace of IR4, thus vectors
in this plane can be represented as 3-vectors with
respect to a local coordinate system spanning the
plane. The corresponding 3-vector to v4 we call
v ∈ IR3. The origin of this system is h0.

Therefore we use a 3-vector encoding a direc-
tion along a great circle, its length giving the dis-
tance to move on the great circle for parametriz-
ing quaternions in nonlinear optimization. Since we

consider quaternions lying on a unit sphere, the dis-
tance equals the angle between the operating point
h0 and the resulting quaternion hZ measured in ra-
dian. The great circle on which the movement is to
be done is defined by intersecting the sphere with
the 2-D plane through the origin that is spanned by
the operating point h0 and v4. The further text is
divided in three parts:

1. Computation of an orthogonal basis of the tan-
gential hyperplane. This basis is the local co-
ordinate system for v .

2. Conversion of the 3-vector v to a 4-vector ly-
ing in the hyperplane.

3. Computation of the resulting quaternion hZ.

3.2.1 Basis of the Tangential Hyperplane

First we compute the hyperplane tangential to the
sphere in h0. This plane is defined by all points
x ∈ IR4 satisfying

h0
T
x = 1 , (11)

since h0 is a normal vector of the plane. In order to
distinguish the normal vector from the quaternion,
in the following we denote the normal vector by n .
But one should keep in mind that

n =
`

n1 n2 n3 n4

´T
= h0 . (12)

This gives the plane equation in normal form:

n1x1 + n2x2 + n3x3 + n4x4 − 1 = 0 . (13)

Since we do not need this equation but rather a ba-
sis of the subspace defined by this plane, we con-
vert equation (13) to parameter form. Therefore we
choose one element of n not equal to zero1. Let
this be without loss of generality n1. Now choose
the three parameters λ = x2, µ = x3 and ν = x4.
Plugging these into (13) and solving for x1 gives:

x1 =
1

n1
(1 − n2x2 − n3x3 − n4x4) ,

x2 = λ, x3 = µ, x4 = ν .

(14)

Thus we get a parameter form of the plane:

x = a + λb
′

1 + µb
′

2 + νb
′

3 , (15)

1there will always be one ni not equal to zero, since |n| = 1.

666

where

a =
`

1
n1

0 0 0
´T

,

b
′

1 =
`

−n2

n1
1 0 0

´T
,

b
′

2 =
`

−n3

n1
0 1 0

´T
,

b
′

3 =
`

−n4

n1
0 0 1

´T
.

(16)

Now we have a basis B ′ for the hyperplane:

B
′ =

`

b ′

1 b ′

2 b′

3

´

. (17)

Note that this basis is not yet orthogonal. To avoid
numerical instabilities an orthogonal basis B is
computed from B ′. Therefore we use the singu-
lar value decomposition (SVD) [11] of B ′ which is
given as:

B
′ = BΣV

T
. (18)

Then the 4 × 3 matrix B is an orthonormal basis
spanning the same subspace as B ′.

3.2.2 3-D/4-D Conversion of v

Given an arbitrary 3-vector v with respect to the
basis B , a 4-vector v4 lying in the tangential hy-
perplane can be computed by:

v4 = Bv . (19)

3.2.3 Computing the Resulting Quaternion

The quaternion hZ we look for lies on the great cir-
cle defined by the intersection of the sphere with the
2-D plane through the origin spanned by h0 and v4:

x = λh0 + µv4N , (20)

where
v4N =

v4

|v 4|
. (21)

Normalization of v4 is of course not necessary for
establishing the plane equation (20). The follow-
ing computations will become more clear, however.
The vectors h0 and v4N build an orthogonal coordi-
nate system whose origin coincides with the origin
of the sphere. The quaternion hZ is a vector lying in
that plane building an angle θ with h0 (see Figure
3). We get hZ as a linear combination of the two
vectors spanning the plane:

hZ = sin(θ) v4N + cos(θ)h0 , (22)

where
θ = |v4| . (23)

It is easily shown that the resulting quaternion hZ is
of norm 1.

PSfrag replacements

h0

hZ

θ

v4N

sin θ

cos θ

Figure 3: The vectors h0 and v4N give an or-
thonormal basis of the plane containing the result-
ing quaternion hZ .

3.2.4 Summary

We will now give a short summary of the steps nec-
essary to use our parametrization. Before perform-
ing the nonlinear optimization do once:

• compute operating point h0 from given rota-
tion matrix,

• compute basis vectors b ′

i (i = 1, 2, 3), build a
4 × 3 matrix B ′,

• compute an orthonormal basis B from B ′ us-
ing SVD,

• initialize parameter vector v = 0 .

During optimization only the following computa-
tions are necessary to get an optimized quaternion
hZ from the parameter vector v :

• convert the 3-vector v to a 4-vector v 4 using
equation (19),

• compute the resulting quaternion hZ from v4

using equation (22),
• if desired convert hZ to a rotation matrix using

equation (8).

4 Experimental Results

For the experiments we chose photogrammetric
bundle-adjustment [4, 6, 10, 3], i. e. nonlinear op-
timization of camera parameters and scene points
using multiple views of a scene simultaneously.
Bundle-adjustment minimizes the back-projection
error, i. e. the root mean square error per image

666

point in pixels, which is given by:
v

u

u

t

1

mn

n
X

j=1

m
X

i=1

`

(xij − x̃ij)
2 + (yij − ỹij)

2
´

,

(24)
where n is the number of frames, m the number of
3-D points, (xij , yij) a detected feature point, and
(x̃ij , ỹij) the back-projection of a reconstructed
3-D point i into frame j.

Before bundle-adjustment, a linear structure-
from-motion method was applied to get an initial
reconstruction of scene geometry and camera posi-
tions. This method is described in [5]; it is based
upon [14], and by applying self-calibration meth-
ods [3] reconstruction is possible up to an unknown
similarity transformation. Since the camera matri-
ces obtained this way are still slightly projectively
distorted, they are forced to be Euclidean by orthog-
onalization of rotation matrices using SVD.

For bundle-adjustment we applied our own im-
plementation of the Levenberg-Marquardt algo-
rithm, which is capable of exploiting the spe-
cial block-structure of the Jacobian in interleaved
bundle-adjustment [13]. More details on the algo-
rithm and the experiments can be found in [12].

We used 8 scenes generated synthetically,
i. e. with known ground truth, two of which are
shown in Figure 4. First we give a short summary
of their properties:

• Each scene consists of 100 3-D points in 20
frames. The points were randomly distributed
within a cube of side length 200 mm. Each
point is visible in all frames.

• The distance and viewing direction of each
camera was varied randomly, thus simulating
the behaviour of a hand-held camera.

• The focal lengths fx and fy were chosen ran-
domly from the intervall 800 – 1200 pixels,
assuming quadratic pixels, i. e. fx = fy. The
values for fx and fy were chosen such that they
correspond to a camera with a 1/2”-CCD-Chip
and a focal length of 8 mm. Therefore the co-
ordinates of the image points are of the same
order of magnitude as in a PAL-image.

• The principal point (u0, v0) was chosen as
(0, 0).

• The 3-D points were projected into each
frame, Gaussian noise with standard deviation
σ of 0.3, 0.7, and 1.0 pixel was added inde-
pendently for each coordinate, giving a total

0
100

200
300

400
500

−50
0

50

0

100

200

300

400

500

(a) radial camera motion

−400
−300

−200
−100

0
100

200
300

400
500

−50
0

50

−500

−400

−300

−200

−100

0

(b) translatorial camera motion

Figure 4: Examples of the scenes used for simu-
lation: The 3-D world points (circles) are located
within a cube centered at the origin, the camera was
moved in a radial (a) or translatorial (b) way. The
arrows give the viewing direction of the cameras at
their respective position. All units in mm.

of 24 different image sequences.
In Table 1 we give some selected results from our 24
sequences obtained after 20 Levenberg-Marquardt
iterations; the complete results are contained in
[12].

The back-projection error is given before and af-
ter nonlinear optimization. The two values before
optimization correspond to the error before (left
value) and after (right value) orthogonalizing the
rotation matrix, since this results in an increasing
back-projection error. For the camera parameters
we give the root mean square error before optimiza-
tion and the change in error of the parameter with
respect to the value before optimization. Thus one

666

Table 1: Back-projection error before (bef.) and after optimization, changes in error in camera parameters
using quaternions (Quat.) and axis/angle representation (A/A). In scenes 1-4 camera motion was radial, in
scenes 5-8 translatorial. Gaussian noise with different standard deviations σ was added to the image points.

Scene σ fx fy u0 v0 t R 3-D Back-proj. Error
bef. 8.60 8.13 9.96 4.37 2.21369 0.00269973 0.243482 0.45/0.49

1 0.3 Quat. -4.09 -3.28 -7.69 -2.74 -0.882988 -0.00201266 -0.14373 0.40
A/A -4.10 -3.28 -7.65 -2.75 -0.885005 -0.00200837 -0.14363 0.40
bef. 36.0 36.5 38.9 26.1 9.57001 0.0110419 0.984122 1.50/1.86

2 1.0 Quat. -7.89 -8.12 -21.8 -15.2 -1.97096 -0.00637703 -0.504492 1.31
A/A -7.86 -7.83 -19.2 -15.0 -1.97941 -0.00573987 -0.490924 1.32
bef. 32.9 32.8 22.7 20.8 9.44783 0.00895585 1.99887 1.74/1.86

3 1.0 Quat. -27.2 -27.0 -15.5 -12.7 -6.37081 -0.00612914 -1.04459 1.33
A/A -27.2 -27.1 -15.5 -12.6 -6.39037 -0.00610905 -1.06381 1.33
bef. 88.7 91.4 47.5 41.1 26.6822 0.0138212 1.78132 1.20/1.73

4 0.7 Quat. -12.4 -15.4 -12.6 -13.5 -3.73035 -0.00545732 -0.81368 0.98
A/A -14.0 -17.3 -19.4 -16.6 -4.64984 -0.00657011 -0.967142 0.96
bef. 45.1 47.2 18.7 13.9 30.3697 0.00762509 8.95917 1.53/2.08

5 1.0 Quat. 2.21 0.765 -4.29 -4.46 -4.61299 -0.0026916 -2.61643 1.31
A/A 3.27 1.61 -4.99 -4.07 -4.45546 -0.00257544 -2.65749 1.31
bef. 340 346 171 128 91.9583 0.0623885 8.46183 1.86/3.95

6 1.0 Quat. -1.68 -8.46 -0.940 -1.50 0.173968 0.00652012 -0.397551 1.70
A/A -2.52 -9.48 0.281 -1.50 0.0102833 0.00716027 -0.254497 1.70
bef. 14.7 15.5 12.7 9.67 4.98782 0.00387035 0.320034 0.45/0.48

7 0.3 Quat. -3.27 -4.05 -7.08 -4.73 -1.13315 -0.00201028 -0.145408 0.39
A/A -3.23 -4.01 -6.95 -4.66 -1.11664 -0.00197918 -0.144794 0.39
bef. 27.7 27.0 28.6 19.7 9.38349 0.00846833 0.667536 1.01/1.11

8 0.7 Quat. -16.7 -16.1 -20.2 -11.3 -6.00133 -0.00561137 -0.35916 0.91
A/A -17.0 -16.5 -21.5 -12.7 -6.13845 -0.00602556 -0.361227 0.91

can see immediately how large the change was, and,
by looking at the sign, whether the error became
larger (+) or smaller (−) during optimization. For
measuring the error in rotations (R) we use the Eu-
clidean distance between two quaternions. In the
table, the root mean square error per component of
the quaternion is given. For translation (t) the Eu-
clidean distance between two translation vectors is
used similar to rotation, i. e. the table gives the er-
ror per component of the vector. The 3-D error de-
notes the root mean square error (and its change)
per world point. In Table 2 the change in error in
rotation is given in percent.

To summarize the results we obtained: It is
not possible to tell in general which of the two
parametrizations to prefer for bundle-adjustment.
The decrease in error in focal length, principal
point, translation, and 3-D points was larger when
using quaternions instead of axis/angle represen-
tation in about 50% of our experiments, and vice
versa. If we look at the change in error for rota-
tion only, we get better results for quaternions than
for axis/angle representation in about 70.8% of the
experiments, the difference in change of error be-
tween quaternions and axis/angle ranging from be-

Table 2: Changes in error in rotation in percent for
the data given in Table 1 with respect to the error
after the linear algorithm and orthogonalization of
the rotation matrix.

Scene σ Quat. A/A
1 0.3 -74.55% -74.39%
2 1.0 -57.75% -51.98%
3 1.0 -68.44% -68.21%
4 0.7 -39.49% -47.54%
5 1.0 -35.30% -33.78%
6 1.0 +10.45% +11.48%
7 0.3 -51.94% -51.14%
8 0.7 -66.26% -71.15%

low 1% to about 5% (see Table 2). With both repre-
sentations change in error is relatively high, in many
cases more than 50% with respect to the error af-
ter the linear algorithm and orthogonalization. Thus
we can recommend our quaternion parametrization
if special focus is set on error in rotation, even if it
is not guaranteed to yield always better results than
axis/angle representation.

666

5 Conclusions

In this paper we presented an easy to use and accu-
rate method for applying the quaternion represen-
tation of 3-D rotations in unconstrained nonlinear
optimization problems using e. g. the Levenberg-
Marquardt algorithm. In order to prove the practical
applicability of this parametrization, we used it in
photogrammetric bundle-adjustment for estimating
camera parameters as well as 3-D scene points start-
ing from an initial reconstruction obtained by a lin-
ear factorization method. The experiments showed
that our parametrization should be used especially
when good estimations for rotations are needed.

References

[1] A. Azarbayejani and A. P. Pentland. Recur-
sive estimation of motion, structure, and focal
length. IEEE Trans. on Pattern Analysis and
Machine Intelligence, 17(6):562–575, 1995.

[2] Oliver Faugeras. Three-Dimensional Com-
puter Vision: A Geometric Viewpoint. MIT
Press, Cambridge, MA, 1993.

[3] R. Hartley and A. Zisserman. Multiple View
Geometry in computer vision. Cambridge
University Press, Cambridge, 2000.

[4] R. I. Hartley. Euclidean Reconstruction from
Uncalibrated Views, volume 825 of Lecture
notes in Computer Science, pages 237–256.
Springer-Verlag, 1994.

[5] B. Heigl and H. Niemann. Camera calibration
from extended image sequences for lightfield
reconstruction. In B. Girod, H. Niemann, and
H.-P. Seidel, editors, Vision Modeling and Vi-
sualization 99, pages 43–50, Erlangen, Ger-
many, Nov. 1999. Infix.

[6] A. Heyden and K. Åström. Euclidean re-
construction from image sequences with vary-
ing and unknown focal length and princi-
pal point. In Proceedings of Computer Vi-
sion and Pattern Recognition, pages 438–443,
Puerto Rico, Juni 1997. IEEE Computer Soci-
ety Press.

[7] A. Heyden and K. Åström. Flexible calibra-
tion: Minimal cases for auto-calibration. In
ICCV 99 [9], pages 350–355.

[8] J. Hornegger and C. Tomasi. Representation
issues in the ML estimation of camera motion.
In ICCV 99 [9], pages 640–647.

[9] Proceedings of the 7th International Con-
ference on Computer Vision (ICCV), Corfu,
September 1999. IEEE Computer Society
Press.

[10] P. F. McLauchlan. Gauge invariance in pro-
jective 3D reconstruction. In Proceedings of
the IEEE Workshop on Multi-View Modeling
& Analysis of Visual Scenes, Fort Collins, Col-
orado, June 1999.

[11] W. H. Press, S. A. Teukolsky, W. T. Vetterling,
and B. P. Flannery. Numerical Recipes in C:
The Art of Scientific Computing. Cambridge
University Press, 2nd edition, 1992.

[12] J. Schmidt. Erarbeitung geeigneter Opti-
mierungskriterien zur Berechnung von Kam-
eraparametern und Szenengeometrie aus Bild-
folgen. Diplomarbeit, Lehrstuhl für Mus-
tererkennung, Universität Erlangen-Nürnberg,
2000.

[13] H.-Y. Shum, Q. Ke, and Z. Zhang. Efficient
bundle adjustment with virtual key frames: A
hierarchical approach to multi-frame structure
from motion. In Proceedings of Computer Vi-
sion and Pattern Recognition, volume 2, pages
538–543, Fort Collins, Colorado, Juni 1999.
IEEE Computer Society Press.

[14] P. Sturm and B. Triggs. A factorization based
algorithm for multi–image projective structure
from motion. In B. Buxton and R. Cipolla,
editors, Computer Vision — ECCV ’96, num-
ber 1065, pages 709–720, Heidelberg, 1996.
Springer.

[15] E. Trucco and A. Verri. Introductory Tech-
niques for 3–D Computer Vision. Prentice
Hall, New York, 1998.

[16] A. Watt and M. Watt. Advanced Animation
and Rendering Techniques. Addison-Wesley,
1992.

666

