
Performance Analysis of Nearest Neighbor Algorithms
for ICP Registration of 3-D Point Sets

Timo Zinßer∗, Jochen Schmidt, Heinrich Niemann

Lehrstuhl für Mustererkennung, Universität Erlangen-Nürnberg
Martensstraße 3, 91058 Erlangen, Germany

zinsser@informatik.uni-erlangen.de

Abstract

There are many nearest neighbor algorithms tailor-
made for ICP, but most of them require special input
data like range images or triangle meshes. We focus
on efficient nearest neighbor algorithms that do not
impose this limitation, and thus can also be used
with 3-D point sets generated by structure-from-
motion techniques. We shortly present the evalu-
ated algorithms and introduce the modifications we
made to improve their efficiency. In particular, sev-
eral enhancements to the well-known k-D tree al-
gorithm are described. The first part of our perfor-
mance analysis consists of experiments on synthetic
point sets, whereas the second part features exper-
iments with the ICP algorithm on real point sets.
Both parts are completed by a thorough evaluation
of the obtained results.

1 Introduction

The ICP (Iterative Closest Point) algorithm is the
most popular algorithm for registration of 3-D point
sets. A comprehensive summary of different vari-
ants of this algorithm can be found in [1]. The ICP
main loop consists of two operations:

• matching points of the data point set to points
in the model point set,

• computing the motion which best aligns the
pairs of corresponding points.

When no additional information is available, the
matching is based solely on the distance of points,
and thus can be formulated as a nearest neighbor
problem. As the nearest neighbor search is the
single most time-consuming processing step of the
ICP algorithm, improving the computation time of

∗This work was partially funded by the European Comission’s
5th IST Programme under grant IST-2001-34401 (project VAM-
PIRE). Only the authors are responsible for the content.

the nearest neighbor algorithm will also greatly in-
crease the performance of the ICP algorithm.

The nearest neighbor search can be enhanced by
using additional information. When the point sets
are given as range images or triangle meshes, the
implicit neighborhood relations of the points can be
utilized to speed up the search [2]. Other methods
take advantage of the fact that range images and
triangle meshes also describe object surfaces [1].
As we focus on working with plain point sets, for
example generated by structure-from-motion tech-
niques (cf. e.g. [3]), such methods lie outside the
scope of this work.

Recently, Greenspan et al. proposed TINN (Tri-
angle Induced Nearest Neighbor), a novel nearest
neighbor algorithm for small point sets [4]. Sorting
the points by their distance to a reference point en-
sures that only a contiguous subset of points has to
be considered. A similar algorithm was devised by
Friedman et al. in 1975 [5]. We will carefully ana-
lyze the performance of both methods in this work.

The k-D tree algorithm introduced by Friedman
et al. in [6] is widely used for nearest neighbor
search in large point sets. Several refinements of
this algorithm were described by Sproull [7] and by
Arya and Mount [8]. Greenspan et al. proposed us-
ing a simple nearest neighbor algorithm like TINN
for searching the leaf nodes of the k-D tree [4]. This
extension should both speed up the search and re-
duce the memory requirements of the k-D tree al-
gorithm. We will describe the k-D tree algorithm
and its possible refinements, as well as the hybrid
k-D tree with enhanced leaf node search. Further-
more, we will analyze the performance of the dif-
ferent approaches on synthetic point sets and with
the ICP algorithm on real point sets.

Another algorithm often used for searching in
large point sets is Elias’ algorithm. It is for example
examined by Cleary in [9]. As this algorithm uni-

VMV 2003 Munich, Germany, November 19–21, 2003

formly partitions the space occupied by the point
set, it is not suited well for the irregular point sets
produced by our structure-from-motion techniques.
Therefore, Elias’ algorithm will not be considered
any further in this work.

Finally, we examine the benefits of the STCNN
(Spherical Triangle Constraint Nearest Neighbor)
enhancement for the k-D tree, a search algorithm
specifically created for ICP by Greenspan et al.
[10]. In a preprocessing step, a neighborhood of
points is generated for each model point. If the mo-
tion update after an iteration of the ICP algorithm
is small, it should be sufficient to search the neigh-
borhood of the last nearest neighbor to find the new
one. We will evaluate the efficiency of this algo-
rithm with our optimized ICP algorithm [11].

After a short description of the nearest neighbor
problem in the next section, we will describe each
examined nearest neighbor algorithm in its own sec-
tion. There are two sections for the performance
analysis. In Sect. 7, we will demonstrate the results
of all experiments on synthetic point sets, and in
Sect. 8, the experiments with the ICP algorithm on
real point sets will be evaluated. We finish this work
with a conclusion in Sect. 9.

2 Problem Definition

The nearest neighbor problem can easily be stated
in a mathematical way. Let P be a set of n points

�
i ∈ IR3, and let � ∈ IR3 be a query point. Then

the nearest neighbor problem for point set P and
query point � is to find the point �

c ∈ P with

‖ � − �
c‖ ≤ ‖ � − �

i‖ ∀ �
i ∈ P . (1)

A simple solution for the nearest neighbor prob-
lem is the exhaustive search algorithm. For all n
points �

i ∈ IR3, the distance to the query point
� is computed, and the point �

c with the smallest
distance is returned. In the implementation of this
simple algorithm, two optimizations can decrease
the required computation time. Firstly, the time-
consuming evaluation of square roots can be cir-
cumvented by working with squared distances. Sec-
ondly, the evaluation of the sum

‖ � − � ‖2 =

3∑

j=1

(qj − pj)
2 (2)

can be aborted if a partial sum is already greater
than the smallest squared distance of the current

nearest neighbor point. Both optimizations are also
used in the other algorithms described in this paper.

Ultimately, all efficient nearest neighbor algo-
rithms are based on the same idea. A suitable pre-
processing step for point set P is employed to re-
duce the number of points that have to be examined
during the nearest neighbor search. Thereby, addi-
tional operations must not take longer than the dis-
tance calculations that are superseded by them.

For the evaluation of different nearest neighbor
algorithms, several criteria have to be considered:

• memory requirements,
• computation time for initialization,
• computation time for nearest neighbor search,
• computation time for adopting changes in P .

These criteria must be judged with respect to the
application area of the algorithm.

As we concentrate on nearest neighbor algo-
rithms for ICP with 3-D point sets, some conclu-
sions can already be drawn. When working with
moderately sized point sets, the memory require-
ments of the nearest neighbor algorithm should not
be a problem. The computation time for nearest
neighbor search is most important, because a search
must be performed for each data point at each itera-
tion of the ICP algorithm. In contrast, the initializa-
tion only has to be done once, and the model point
set does not change during one run of ICP.

3 The TINN Algorithm

The TINN (Triangle Induced Nearest Neighbor) al-
gorithm was proposed by Greenspan et al. in [4].
During the initialization, all points in point set P

are sorted by their distance to a reference point � ,
which can be chosen arbitrarily. Therefore, the time
complexity of the initialization is O(n log n). The
memory requirements are also very modest, only
one extra float value has to be stored for each point.

During the nearest neighbor search, a contiguous
subset of points is searched. At first, the distance
dq of query point � from reference point � is calcu-
lated. Then, the point with the most similar distance
from � is chosen as starting point �

s. This can be
implemented efficiently using a binary search over
the sorted point set.

After checking the starting point, the points on
the left and on the right of the starting point are
searched for the nearest neighbor of � . There are
several possibilities for the search order:

666

• search on one side of �
s, then on the other,

• search alternately on both sides of �
s,

• search the next remaining point with a stored
distance most similar to dq .

When the numbers of searched points are consid-
ered, none of the given alternatives has a clear ad-
vantage over the others. Consequently, the third
method should not be used, as it requires additional
operations for determining the next point.

Let �
min be the best point found so far. Then the

stopping criterion for searching the points on either
side of point �

s can be derived from the triangle
inequality:

|‖ � − � ‖ − ‖�
i − � ‖| > ‖ � − �

min‖

⇒ ‖ � − �
i‖ > ‖ � − �

min‖ . (3)

As soon as one point �
i satisfies the inequality in

the first line, all other points on the same side of
point �

s also satisfy this inequality. Therefore, no
other point on the same side of point �

s can be
closer to � than �

min.
No expected time complexity is specified by

Greenspan et al., but experimental evaluation sug-
gests a time complexity of O(n2/3) for three-
dimensional data. Thus, TINN should only be used
for small point sets of up to 500 points.

4 The CAS Algorithm

25 years before TINN, a similar algorithm was pre-
sented by Friedman et al. in [5]. We will refer to
it as CAS (Coordinate Axis Sort) for brevity. Here,
the points are sorted along one coordinate axis dur-
ing initialization. Interestingly, CAS can be consid-
ered a specialization of TINN, because it is gener-
ated by moving the reference point to infinity along
one coordinate axis.

Although TINN and CAS are very similar, there
are some important differences. Firstly, there is no
need to store an additional distance for each point.
Secondly, by choosing the coordinate axis with the
largest variance for sorting the points, the average
number of searched points can easily be optimized.
Last but not least, the stopping criterion is compu-
tationally less expensive, because only one compo-
nent a of the point vectors has to be considered:

|qa − pi,a| > ‖ � − �
min‖

⇒ ‖ � − �
i‖ > ‖ � − �

min‖ . (4)

Taking these differences into account, it becomes
obvious that TINN can only be faster than CAS if
its sorting scheme excludes more points from the
search. Whether this proposition holds will be eval-
uated experimentally in Sect. 7.

5 The k-D Tree Algorithm

The k-D tree nearest neighbor algorithm was intro-
duced by Friedman et al. in [6]. Due to its immense
popularity, many refinements have been developed
since its conception, for example by Sproull [7] and
by Arya and Mount [8].

The basic idea of the k-D tree algorithm is to re-
cursively partition a point set P by hyperplanes, and
to store the obtained partitioning in a binary tree.
Sproull described several alternatives for choosing
the orientation of the hyperplanes:

• The hyperplane is orthogonal to a coord. axis.
– Use alternating coordinate axes.
– Use coordinate axis where the current

subset has the largest spread.
– Use coordinate axis where the current

subset has the largest variance.
• The hyperplane is orthogonal to the principal

axis of the current subset.
We use the “coordinate axis / variance” method, as
it constitutes a good compromise between compu-
tational cost and reduction of examined points.

According to Sproull, the position of the hyper-
plane can be defined by either

• the bisector of the range of coordinate values,
• the mean coordinate value,
• or the median coordinate value.

Choosing the median coordinate value of the cur-
rent subset involves additional computational cost
during the initialization, but allows us to build a per-
fectly balanced binary tree. Thus, in any layer of
the tree, the number of points in the corresponding
subsets differs at most by one.

Usually, each inner node of the tree stores one
pointer to both of its children. However, we do not
need these pointers, but store the inner nodes of the
tree in an array and access them via their index. If
the tree has l levels of inner nodes, it contains 2l−1
inner nodes. Let the root node have index 0. When
an inner node has index i, the indices of its children
are 2i + 1 and 2i + 2.

Additionally, we save memory by working with
“logical” leaf nodes. Point set P is initially stored

666

in one large array. During the initialization, for
each inner node the current subset is sorted along
the chosen coordinate axis, so that both originating
smaller subsets remain contiguous. The recursive
search starts at the root node, which represents all
points from indices 0 to n − 1. When an inner
node represents points from indices i to j, its chil-
dren represent points from indices i to b(i + j)/2c
and from indices b(i + j)/2c + 1 to j accordingly.
As the start and end index for each node can easily
be calculated during the recursive search, no extra
pointers and no physical leaf nodes are required.

Unlike Friedman, we do not store a bounds array
for each node. Instead, our inner nodes only con-
tain the index of the coordinate axis orthogonal to
the hyperplane and the distance of the hyperplane
to the origin. Arya and Mount show how to effi-
ciently compute exact distances to the cells of the
k-D tree in this case [8]. Also unlike Friedman,
we do not use a “ball within bounds”-test when a
new best point is encountered, because the compu-
tational cost for these tests is higher than that for the
final backtracking to the root node.

On the whole, the recursive search procedure of
our implementation is very lean. At first, the child
that is on the same side of the partitioning hyper-
plane as the query point is examined by a new in-
vocation of the procedure. When the search back-
tracks to the current node, the other child is only
considered if its distance from the query point is
smaller than that of the currently best point.

The memory requirements of our k-D tree algo-
rithm are O(n), because a perfectly balanced tree
with n leaf nodes has exactly n−1 inner nodes. The
time complexity of the initialization is O(n log2 n)
for our variant, due to the computation of the ex-
act median of the point coordinates for splitting
each inner node. Friedman proved that the expected
search time for the k-D tree algorithm is propor-
tional to (log n) [6].

It is of particular importance to identify the opti-
mum value for the only parameter of the k-D tree,
the maximum number of points in the leaf nodes b.
It is obvious that the average number of examined
points is minimal for b = 1. But although storing
more points in each leaf node increases the average
number of examined points, it also decreases the
number of layers of the tree and the number of re-
cursive calls of the search procedure. We will show
how to determine b experimentally in Sect. 7.

The hybrid k-D tree algorithm was proposed by
Greenspan et al. in [4] and uses the TINN algorithm
for searching its leaf nodes. This enhancement
should increase the optimum value for b, thereby
reducing the levels of the tree and the memory re-
quirements of the algorithm. Provided that TINN is
better suited for searching small point sets than the
k-D tree algorithm, the performance of the hybrid
algorithm should also improve. We implemented
the described hybrid k-D tree algorithm, but opted
for the CAS algorithm instead of the TINN algo-
rithm.

6 The STCNN / k-D Tree Algorithm

The STCNN (Spherical Triangle Constraint Nearest
Neighbor) enhancement for the k-D tree algorithm
was specifically developed by Greenspan et al. to
speed up the nearest neighbor search of ICP [10]. It
is based on the observation that the motion updates
of the ICP algorithm become small after the first
few iterations. Thus, the nearest neighbor points of
the previous iteration often constitute a useful ap-
proximation for those of the current iteration.

During the initialization, a list of neighbor points
is generated for each model point. Let � old

c be the
nearest neighbor of the previous query point � old.
Furthermore, let L = {� nb

1 , . . . , � nb

k } be the list of
neighbor points for � old

c , sorted by increasing dis-
tance from � old

c . Then, the nearest neighbor search
for query point � can be accelerated if the following
inequation is met:

‖ � − � old

c ‖ ≤
1

2
‖� nb

k − � old

c ‖

⇒ �
c ∈ {� old

c } ∪ L . (5)

If the inequation is not met, a conventional search
in the k-D tree has to be performed.

Greenspan et al. limit the number of neighbor
points by specifying their maximum distance from
the considered model point. Unfortunately, the re-
lation of maximum distance and average number of
neighbor points is strongly affected by the shape of
point set P . In order to be able to adjust the mem-
ory requirements of the algorithm more directly, we
explicitly set the number of stored neighbor points.
Whether the accelerated search of the STCNN / k-D
tree algorithm can offset its more costly initializa-
tion will be evaluated experimentally in Sect. 8.

666

0

5

10

15

20

25

30

35

40

45

50

0 50 100 150 200 250 300 350 400 450 500

se
ar

ch
 ti

m
e

 [
m

se
c]

size of point set

Exhaustive search
TINN
CAS
k−D tree (12)

0

5

10

15

20

25

30

35

40

45

50

0 50 100 150 200 250 300 350 400 450 500

nu
m

be
r o

f e
xa

m
in

ed
 p

oi
nt

s

size of point set

Exhaustive search
TINN
CAS
k−D tree (12)

Figure 1: Comparison of nearest neighbor algo-
rithms for small point sets. The maximum number
of points in the leaf nodes for the k-D tree algorithm
is given in parentheses.

7 Experiments on Synthetic Point Sets

In this section, we evaluate the performance of the
described nearest neighbor algorithms on synthetic
point sets, which were generated by uniformly dis-
tributing points in a unit cube. The query points
were also uniformly distributed in the same unit
cube. Each of the experiments performed in this
section is illustrated by one figure with two charts.
The upper chart shows the measured search times in
milliseconds per 10000 query points. For the mea-
surements, a PC with an Athlon XP 1500+ cpu and
a Via KT266A chipset was used.

The lower chart displays the average number of
examined points per query point. Hereby, a point
is counted when its distance to the query point is
evaluated. Consequently, computations that access
control structures like the internal nodes of a k-D
tree are not reflected in this number.

The results of the first experiment, which was
conducted for small point sets of up to 500 points,

are presented in Fig. 1. Even for very small point
sets, the exhaustive search is clearly outperformed
by all other algorithms. It is interesting to note that
the search time of the exhaustive search does not
increase linearly with the size of point set P . This
effect is caused by the partial sum evaluation de-
scribed in Sect. 2.

The TINN algorithm is slower than the older
CAS algorithm for all sizes of point set P . As its
search operations are more costly, only a reduction
of the number of examined points could acceler-
ate the TINN algorithm. However, it can clearly
be seen in the lower chart of Fig. 1 that the sorting
criterion of the CAS algorithm is more efficient for
the given point sets.

Greenspan et al. show in [4] that TINN is faster
than their implementation of the k-D tree algorithm
for point sets of up to 275 points. In contrast to
this, our adapted version of the k-D tree algorithm
is faster than TINN for point sets of any size. Ad-
ditionally, the k-D tree algorithm is only beaten by
the CAS algorithm for point sets with less than 100
points. These results document the efficiency of our
enhancements for the k-D tree algorithm.

In the second experiment, the performance of the
nearest neighbor algorithms was evaluated for large
point sets of up to one million points. We left out
the exhaustive search, which is not very useful for
large point sets. Instead, we included the hybrid k-
D tree into the set of tested algorithms. The results
of this experiment are shown in Fig. 2. Please take
note that the horizontal axes of the charts are scaled
logarithmically.

As expected, the TINN and CAS algorithms can-
not keep up with the k-D tree based algorithms for
large point sets. Both k-D tree algorithms perform
well, but the hybrid k-D tree can slightly surpass the
standard k-D tree. Due to its larger leaf nodes, the
hybrid k-D tree has fewer levels of inner nodes. The
second chart of Fig. 2 also shows that the hybrid al-
gorithm examines fewer points. Apparently, these
advantages are almost compensated by the more
complicated search procedure within the leaf nodes.

Because of the logarithmic scale of the horizon-
tal axis, a linear graph should be expected for the
k-D tree algorithm in the upper chart. This behav-
ior can also be observed, except for the kink at ap-
proximately 10000 points, which can be explained
by the internal structure of the central processing
unit. When the point sets reach the size of 10000

666

0

10

20

30

40

50

60

70

80

90

100 1000 10000 100000 1e+06

se
ar

ch
 ti

m
e

 [
m

se
c]

size of point set

TINN
CAS
k−D tree (12)
hybrid k−D tree (36)

0

10

20

30

40

50

60

100 1000 10000 100000 1e+06

nu
m

be
r o

f e
xa

m
in

ed
 p

oi
nt

s

size of point set

TINN
CAS
k−D tree (12)
hybrid k−D tree (36)

Figure 2: Comparison of nearest neighbor algo-
rithms for large point sets. The maximum numbers
of points in the leaf nodes for the k-D tree algorithm
are given in parentheses.

points, the data structures no longer fit into the in-
ternal cache of the cpu and have to be swapped to
the slower main memory.

Whenever all leaf nodes are filled to the maxi-
mum, a new layer has to be added to the k-D tree,
and the number of points in the leaf nodes is al-
most exactly halved. As a consequence, the number
of examined points also decreases. This behavior
can be observed for both k-D tree algorithms in the
lower chart of Fig. 2. But every third time, the num-
ber of examined points decreases only slightly for
the hybrid k-D tree. This phenomenon can be ex-
plained with the cubic shape of the synthetic point
set and should not appear when working with real
point sets.

The choice of the maximum number of points in
the leaf nodes b is very important for the perfor-
mance of the k-D tree algorithm. Therefore, we
tested the k-D tree algorithm with different values
for parameter b in our third experiment. As the ac-

12

14

16

18

20

22

24

26

28

250 500 1000 2000 4000 8000

se
ar

ch
 ti

m
e

 [
m

se
c]

size of point set

k−D tree (4)
k−D tree (12)
k−D tree (36)

0

10

20

30

40

50

60

70

80

90

250 500 1000 2000 4000 8000

nu
m

be
r o

f e
xa

m
in

ed
 p

oi
nt

s

size of point set

k−D tree (4)
k−D tree (12)
k−D tree (36)

Figure 3: Comparison of k-D tree algorithms for
different number of points in leaf nodes. The max-
imum numbers of points in the leaf nodes for the
k-D tree algorithm are given in parentheses.

tual number of points in the leaf nodes can lie be-
tween b/2 and b, depending on the size of the point
set, we chose b ∈ {4, 12, 36}, so that different trees
are built for each possible size of point set P . The
obtained results for search time and number of ex-
amined points are depicted in Fig. 3.

The lower chart shows that the number of ex-
amined points increases with the size of the leaf
nodes. But at the same time, the number of levels
of the k-D tree decreases. Consequently, the fastest
search time can be achieved by finding a compro-
mise between point examination and tree traversal.
This compromise depends on the implementation,
the compiler, and the hardware and can only be de-
termined experimentally.

In the upper chart, the k-D tree with b = 4 suffers
a performance penalty whenever a new tree level is
added. This clearly shows that new levels are added
too early and that larger leaf nodes should be used.
In contrast, the k-D tree with b = 36 gains much

666

Figure 4: Point set used for performance evaluation.

speed when a new level is added to the tree. This be-
havior indicates that the new level should have been
added earlier by using a smaller maximum number
of points in the leaf nodes. Finally, the k-D tree with
b = 12 does not show any abrupt changes in its av-
erage search time. Therefore, its maximum number
of points in the leaf nodes is optimal.

8 Experiments with ICP

In this section, we evaluate the performance of all
described nearest neighbor algorithms with an ICP
algorithm on a real point set. We employ an ICP
variant that can be accelerated by motion extrapo-
lation and by hierarchical data point selection. The
motion extrapolation aims at reducing the number
of iterations needed for convergence of the algo-
rithm. Simultaneously, the hierarchical data point
selection can improve the computation time by us-
ing only every 2i-th data point on the i-level of the
hierarchy (see [11] for further details).

The point set in Fig. 4 contains 3600 points, has
a height of approximately 2 units, and was recon-
structed from a video by applying structure-from-
motion techniques. It was directly used as the set of

A B C D
exh. search 8170 6767 5297 4582
TINN 1362 1157 753 610
CAS 885 764 514 417
k-D tree 629 533 405 351
hyb. k-D tree 597 506 384 331
STCNN (5) 594 509 377 325
STCNN (10) 550 483 353 306
STCNN (15) 547 479 359 308
STCNN (20) 550 486 368 324
STCNN (25) 554 493 380 330

Table 1: Computation times of ICP algorithm for
different nearest neighbor algorithms in msec. The
numbers of neighbor points used for STCNN are
given in parentheses.
A: standard ICP algorithm
B: A + motion extrapolation
C: B + point selection hierarchy with two levels
D: B + point selection hierarchy with four levels

model points for the ICP algorithm. A set of data
points was created by rotating this point set by 30
degrees, moving it by 0.17 units and adding Gaus-
sian noise with a standard deviation of 0.01 units.
With this configuration, the ICP algorithm reliably
converges to the correct registration.

The results of our experiment are presented in Ta-
ble 1. We used the hybrid k-D tree as the basis for
the STCNN extension, because it has proven to be
the fastest of our standard nearest neighbor algo-
rithms. The given computation times also include
the motion estimation of the ICP algorithm. For ex-
ample, these computations take approximately 300
msec in column A and 180 msec in column D.

There are no surprises for the nearest neighbor al-
gorithms already tested in the previous section. The
CAS algorithm is considerably faster than TINN,
and the hybrid k-D tree algorithm has a small lead
over the standard k-D tree algorithm. As expected,
the hybrid k-D tree algorithm is the fastest of the
previously tested algorithms.

The STCNN extension manages to improve the
results of the hybrid k-D tree algorithm. But the
results indicate that the determination of the opti-
mum number of neighbor points is difficult. In col-
umn A, initialization takes 40 msec and search takes
210 msec for 10 neighbor points. In contrast to this,
for 20 neighbor points initialization takes 60 msec

666

and search takes 190 msec. Thus, computing more
neighbor points slows down the initialization, but
accelerates the search. As the number of iterations
of the ICP algorithm is not known in advance, it is
difficult to choose the optimum value for this im-
portant parameter.

The different columns of Table 1 show that en-
hancing the ICP algorithm is also very important
for the final speed of the algorithm. When employ-
ing the motion extrapolation and the point selection
hierarchy, the computation time is almost halved.

9 Conclusion

In the first part of this work, we described several
algorithms for efficient nearest neighbor search in
three-dimensional point sets. In particular, we pro-
posed to enhance the well-known k-D tree algo-
rithm by creating a perfectly balanced tree struc-
ture. As a consequence, our variant of the k-D tree
algorithm completely circumvents the use of point-
ers for connecting its nodes. Additionally, we pre-
sented a more direct way of controlling the memory
requirements of the STCNN enhancement, which
was specifically created for accelerating the nearest
neighbor search of the ICP algorithm.

We analyzed the performance of the nearest
neighbor algorithms by experiments with synthetic
point sets. The old CAS algorithm due to Friedman
et al. clearly outperformed the newer TINN algo-
rithm proposed by Greenspan et al. For point sets
with more than 100 points, our enhanced k-D tree
algorithm is faster than both TINN and CAS. An
additional performance increase can be achieved by
using the hybrid k-D tree algorithm. As a part of our
experimental evaluation, we showed how to find the
optimum number of points in the leaf nodes for the
k-D tree algorithm.

Finally, we tested the nearest neighbor algo-
rithms with an ICP algorithm on a real point set. For
the previously tested algorithms, the results of the
synthetic tests could be verified. What is more, the
STCNN enhancement for nearest neighbor search
proved to further accelerate the ICP algorithm. But
it must also be noted that directly enhancing the
speed of the ICP algorithm by motion extrapolation
and the use of a point selection hierarchy has a far
stronger impact on the final speed of the algorithm
than accelerating the nearest neighbor search alone.

References

[1] S. Rusinkiewicz and M. Levoy, “Efficient
Variants of the ICP Algorithm”, Proceedings
of the 3rd International Conference on 3-D
Digital Imaging and Modeling, Quebec City,
Canada, May 2001, pp. 145–152.

[2] T. Jost and H. Hügli, “Fast ICP Algorithms
for Shape Registration”, Pattern Recognition
– 24th DAGM Symposium, Zurich, Switzer-
land, September 2002, pp. 91–99.

[3] R. I. Hartley and A. Zisserman, “Multiple
View Geometry in Computer Vision”, Cam-
bridge University Press, 2000.

[4] M. Greenspan, G. Godin, and J. Talbot,
“Acceleration of Binning Nearest Neighbour
Methods”, Vision Interface 2000, Montreal,
Canada, May 2000, pp. 337–344.

[5] J. H. Friedman, F. Baskett, and L. J. Shus-
tek, “An Algorithm for Finding Nearest
Neighbors”, ACM Transactions on Comput-
ers, 1975, pp. 1000–1006.

[6] J. H. Friedman, J. L. Bentley, and R. A. Finkel,
“An Algorithm for Finding Best Matches in
Logarithmic Expected Time”, ACM Transac-
tions on Mathematical Software, vol. 3, no. 3,
1977, pp. 209–226.

[7] R. F. Sproull, “Refinements to Nearest-
Neighbor Searching in k-Dimensional Trees”,
Algorithmica, vol. 6, 1991, pp. 579–589.

[8] S. Arya, D. M. Mount, “Algorithms for
Fast Vector Quantization”, Proceedings of the
IEEE Data Compression Conference, Snow-
bird, Utah, 1993, pp. 381–390.

[9] J. G. Cleary, “Analysis of an Algorithm
for Finding Nearest Neighbours in Euclidean
Space”, ACM Transactions on Mathematical
Software, vol. 5, no. 2, 1979, pp. 183–192.

[10] M. Greenspan and G. Godin, “A Nearest
Neighbor Method for Efficient ICP”, Proceed-
ings of the 3rd International Conference on
3-D Digital Imaging and Modeling, Quebec
City, Canada, May 2001, pp. 161–168.

[11] T. Zinßer, J. Schmidt, and H. Niemann, “A
Refined ICP Algorithm for Robust 3-D Corre-
spondence Estimation”, Proceedings of the In-
ternational Conference on Image Processing,
Barcelona, Spain, September 2003, to appear.

666

