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Abstract

This work presents a technique for computing dense dis-
parity maps from a binocular stereo camera system. The
methods are applied in an Augmented Reality setting for
combining real and virtual worlds with proper occlusions.
The proposed stereo correspondence technique is based on
area matching and facilitates an efficient strategy by using
the concept of a three-dimensional similarity accumulator,
whereby occlusions are detected and object boundaries are
extracted correctly. The main contribution of this paper is
the way we fill the accumulator using absolute differences
of images and computing a mean filter on these difference
images. This is where the main advantages of the accu-
mulator approach can be exploited, since all entries can
be computed in parallel and thus extremely efficient. Addi-
tionally, we perform an asymmetric correction step and a
post-processing of the disparity maps that maintains object
edges.

1. Introduction

In this paper we introduce a method for computing dense
disparity maps for a stereo image pair. The application we
have in mind is Augmented Reality, where computer gen-
erated virtual objects are to be rendered into a real scene
with proper occlusion handling. A vast amount of litera-
ture is available on the geometry and calibration of binocu-
lar stereo camera systems [5, 8], hence we will not go into
detail at this point. Besides the classical approaches for es-
tablishing correspondences between two images, which are
feature- and area-based matching, other techniques such as
phase- and energy-based ones have been developed. An
overview can be found in [1]. We propose the use of block-
matching by exploiting the advantages of a similarity accu-
mulator resulting in a very efficient computation scheme for
consistent dense disparity maps. 3-D accumulator concepts
have been developed previously, e. g. see [15] and [18].
Augmented Reality applications using disparity maps can
be found e. g. in [12, 16]. Other approaches do not compute

disparity maps, but use contour-based methods for resolv-
ing occlusions, as in [3]. In [12] a recursive approach for
computing disparity maps for video-conferencing scenar-
ios is presented. The topic of obtaining disparity for tele-
presence applications by combining optical flow techniques
and block-matching is addressed in [16].

A disparity computation algorithm that is to be used in
an Augmented Reality application has to meet the follow-
ing requirements:
Real-Time: Efficiency of the stereo algorithm is a determin-
ing criterion for the latency and thus the real-time capability
of the whole Augmented Reality system.
Left and Right Depth Maps: For a stereoscopic Augmented
Reality system it is necessary to have depth maps for both
camera images. It is important to get consistent maps in
both images, i. e. occlusions in the left image must fit to oc-
clusions in the right image and vice versa.
Dense Disparity Maps: The disparity maps should be
dense, i. e. they should contain a disparity for each pixel,
otherwise occlusion of virtual objects by real objects will
be insufficient.
Sharp Edges: Edges of real objects should be extracted very
well since exactly at these locations virtual and real objects
meet each other, and smooth transitions would lessen the
immersion into the augmented scene.
Detection of Occlusions: In the case of occluding objects in
the real scene no corresponding points can be detected for
some areas of the two images. The correspondence algo-
rithm should be able to detect these locations in the images
so that gaps in the disparity maps can be filled in a post-
processing step.

In the following section we will present a technique for
computing dense disparity maps meeting the requirements
above. Results are presented in Sect. 3 together with some
examples of real scenes augmented by virtual objects.

2. Disparity Calculation

In the following we will describe how to compute dispar-
ity maps from two rectified images. The term rectification
denotes a transformation of a given stereo image pair such
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Figure 1. Disparity levels of a (rectified) stereo
camera system.

that corresponding epipolar lines are colinear and parallel
with one of the image axes, usually the horizontal one. This
rectified image pair, also called normalized stereo image
pair, can be considered as images taken by a stereo camera
system that can be derived from the original one by rotating
the cameras around the optical center. The main advantage
of using rectified images is that corresponding points can
be found on the same scanline in both images which makes
searching much easier and faster since no resampling of the
images along the epipolar lines has to be done over and over
again. In [7] an efficient rectification algorithm is presented,
which is used here.

For correspondence computation we introduce the con-
cept of a similarity accumulator. Although other authors
[15, 18] also use three-dimensional accumulators with dis-
parity as the third dimension, our concept is new in the sense
that it can be seen as an abstract intermediate step between
the filling of the accumulator cells using a certain similar-
ity measure and the actual matching for obtaining the two
disparity maps. Additionally, we perform an asymmetric
correction step and a post-processing of the disparity maps
that maintains object edges.

In the following sections we will describe the similar-
ity accumulator and how to compute dense and consistent
disparity maps from the filled accumulator cells.

2.1. Similarity Accumulator

For finding corresponding points in a stereo image pair
we use a block-matching method based on computing the
sum of absolute differences (SAD) of two blocks:

εSAD(u, v, d) =
w∑

µ=−w

w∑

ν=−w

|Il(u + µ, v + ν) − Ir(u − d + µ, v + ν)| ,

(1)

where Il and Ir denote the left and right image, d is the
disparity, w the window size and (u, v) are the coordinates
of the center pixel of the block, where εSAD is computed.

Figure 1 shows the origin of the block displacements be-
tween left and right image. For simplicity only four viewing
rays (image columns) are shown from top. The main point
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Figure 2. Schematic representation of an ac-
cumulator layer and strategy for determining
the respective row in the left (Dl) and right
(Dr) disparity map. The gray-value of an ac-
cumulator cell reflects the similarity between
left and right image of a certain pixel when the
disparity is given. Dark means strong, light
means weak similarity. See text for a more
detailed description.

is the overlapping of the fields of view of the two cameras.
A planar object lying in the plane denoted by disparity level
d is displaced in the right image exactly d pixel columns
with respect to the left image. Disparity level 0 is at in-
finity, level 4 means that the object is only visible for one
camera.

It is possible to build a three-dimensional similarity
accumulator containing the two dimensions of the image
planes plus disparity as the third dimension. The intensities
Il(u, v) and Ir(u−d, v) are used for computing the similar-
ity measure in accumulator cell a(u, v, d). The size of the
accumulator is defined by the image size um × vm and the
disparity range [dmin, dmax] in consideration: (um + dmax)×
vm × (dmax − dmin + 1).

The actual computation of accumulator entries will be
described in Sect. 2.4. First, we will show how to get dis-
parity maps from an already filled accumulator.

2.2. Consistent Left and Right Disparity Maps

The similarity accumulator allows us to tell which dis-
parity is the most likely one for each pixel, if all accumula-
tor cells were computed.

Figure 2 shows a schematic representation of the proce-
dure described in the following. One can see a layer v of the
accumulator a that allows us to compute the corresponding
row v in the left and right disparity map. The entries of
the accumulator are painted in different shades of gray; the
darker the gray-value the more likely is the assignment of
the corresponding disparity value. In order to get the op-
timal disparities of an arbitrary row v for the left disparity
map Dl, a vertical search (with respect to the scheme) is
done in the accumulator:

∀u ∈ [0, um−1] : Dl(u, v) = argmin
d∈[dmin,dmax]

a(u, v, d) . (2)



It is assumed that smaller accumulator entries give a higher
similarity, which is true when using εSAD (equation (1)).
The row v of the right disparity map Dr is computed by a
diagonal search in layer v of the accumulator:

∀u ∈ [0, um−1] : Dr(u, v) = argmin
d∈[dmin,dmax]

a(u + d, v, d) .

(3)
To get the complete maps (2) and (3) are evaluated for all
rows v ∈ [0, vm−1] , i. e. all accumulator layers.

One problem is that up to now we do not know anything
about the confidence of a disparity value computed by (2)
and (3). This is especially important if there are occluding
objects in the images, since no left/right correspondences
are available in that case. A simple solution would be to
introduce a threshold: If all accumulator entries in a certain
diagonal or vertical direction are below the threshold, an
occlusion and thus an undefined disparity is likely. In Fig. 2
this is the case for Dl(1, v) and Dr(5, v). But it is still open
how to choose this threshold.

Another problem is the consistency of the pair of dis-
parity maps Dl, Dr. If the maps are to be used for a stereo-
scopic augmentation of a real scene, it is important that each
scene point has matching disparities in the left and right
map, otherwise we would get different occlusions of virtual
and real objects in the two images. We will now show how
to solve these problems.

In the majority of cases homogeneous image regions
have the effect that the accumulator has many very good
similarity entries in diagonal and vertical direction, respec-
tively. If a homogeneous region (e. g. a white wall) is par-
tially occluded by a foreground object (e. g. a floor lamp) in
the right image, the non-occluded homogeneous parts in the
right image lead to wrong correspondences in the left image
which are actually correspondence-less. The problem here
is that those matches have a good similarity value and thus
cannot be filtered out by the threshold method mentioned
above. Therefore we will now give a technique for verify-
ing disparities in the accumulator.

In early papers on computing dense disparity maps from
stereo images [13, 14], Marr and Poggio make two assump-
tions about a stereo system, uniqueness and continuity of
the disparity map. That means, each pixel in the two im-
ages can have exactly one disparity and thus exactly one
depth in the scene. If we look at the accumulator cells
(u = 1, v, d = 0) and (u = 3, v, d = 2) in Fig. 2, that give
the best values for the vertical search for Dl(u = 1, v) and
Dl(u = 3, v), we can see that the uniqueness assumption is
violated, since both cells lie on a diagonal and the diagonal
search for Dr(u = 1, v) has to decide for the better one of
both values. Thus two pixels in the left image are matched
to the same pixel in the right image. In Fig. 2 this is empha-
sized by the arrows below the rows of the computed dispar-
ity maps.

Hence for each pixel (u, v) the computed left disparity
map is tested for satisfying the following constraint:

|Dr(u − Dl(u, v), v) − Dl(u, v)| ≤ dtol . (4)

If the constraint is violated, the entry in the disparity map
Dl(u, v) is set to undefined. This additional verification step
enforces the uniqueness if dtol = 0 . In some cases it is
desirable to permit small deviations, i. e. to permit a slightly
different disparity for the corresponding pixel. For stereo
images with a wide disparity range [dmin, dmax] a tolerance
value of dtol = 1, . . . , 5 can make sense if changes of one
disparity level are not significant.

The right disparity map is verified by the following con-
dition:

|Dl(u + Dr(u, v), v) − Dr(u, v)| ≤ dtol . (5)

Thus we gain (with dtol = 0) consistent left and right
disparity maps. Both maps still contain undefined entries
which have to be filled. In Fig. 2 undefined disparities are
parenthesized.

2.3. Filling the Gaps

Most methods (e. g. [12]) for computing dense disparity
maps fill gaps in the maps by simple linear interpolation
in the direction of the epipolar lines. The drawback is that
neighboring lines are treated independently of each other
and thus often violate the postulated continuity criterion in
the disparity map in vertical direction. Hence it is impor-
tant to use all available disparity information near the gap
to be filled. We found the following technique to give very
satisfying results.

First, a Median filter with a small mask size (3×3 or 5×5)
is applied to the map in order to fill small gaps, especially
those that came from missing correspondences caused by
perspective distortions. Additionally, the Median filter sup-
presses noise while maintaining edges in the disparity map.
A generously dimensioned morphological closing operator
(i. e. dilation followed by erosion) is used for filling larger
gaps. This brings the desired effect that foreground objects
consist of contiguous disparity regions. Examples for the
dimension of the closing operator can be found in Sect. 3.

At the end large undefined regions are filled along the
scanlines (which are the epipolar lines since we rectified
the images) using the smaller of the two disparities at the
left and right end of the gap. The reason for this is that
undefined regions are mainly caused by occlusions where
objects far away (having small disparities) are occluded by
near objects (having large disparities).

In the following section we will answer the still open
question of how to compute the entries of the accumulator.

2.4. Computing Similarity Accumulator Entries

A cell of the three-dimensional accumulator a(u, v, d)
rates the similarity of the pixel Il(u, v) and Ir(u−d, v) while
considering at least the local neighborhood. A simple block
matching would be sufficient, but we will see that the con-
struction of the accumulator allows us to be more efficient.

With a window size of (2w + 1) × (2w + 1) the com-
putation of εSAD(u, v, d) for a given triple (u, v, d) needs



Figure 3. The 9 windows used for block
matching for a window size of 7 × 7, 8 of
them asymmetric.

(2w + 1)2 subtractions and calculating the absolute values,
and (2w)2 additions. With an image size of um × vm and a
disparity range of [dmin, dmax] this results in umvmdm(2w+
1)2 absolute differences and umvmdm(2w)2 additions, if
dm = (dmax − dmin + 1) and if we omit the image borders.

The similarity accumulator allows us to use a much more
efficient method for computing εSAD(u, v, d) as an entry
a(u, v, d). We start by computing the absolute differences
of the two images at a certain disparity d. Thus we get dm
difference images; the absolute differences are stored in the
accumulator. This way only umvmdm absolute differences
have to be computed.

The result could be used as a similarity measure for cor-
responding pixels in the left and right image: Large values
mean low, small values high similarity. These difference
images alone are equivalent to a block matching with win-
dow size 1 × 1 (i. e. w = 0) and thus are very noisy ac-
cumulator entries. This can be avoided by applying an ad-
ditional mean filter on the difference images with window
size (2w+1)×(2w+1) . Since we will work with integers
in practice, one should use a modified mean filter that only
sums the values without dividing by their number. Such
a modified mean filter is separable and thus can be imple-
mented to work in linear time complexity with respect to the
image size, because for each pixel only one addition and one
subtraction is necessary, giving a total of 2umvmdm opera-
tions for computing the sum of absolute differences of the
dm layers of the similarity accumulator.

2.5. Extensions

What we did not consider yet is the kind of window that
defines the neighborhood for block matching. Up to now
we used a symmetric window; however, this leads to bad
SAD values when the window covers edges of objects and
thus different disparities. Therefore it is useful to apply a
concept introduced in [6], where 9 different windows are
used, 8 of them asymmetric. Figure 3 shows the 9 windows
for a window size of 7×7 (i. e. w = 3). The window giving
the best SAD value determines the disparity of the current
pixel.

The method described is very efficient and can easily be
integrated in the concept of the accumulator: First the dis-
parity maps are computed as described above; for comput-
ing the cell entries the symmetric mean filter is used. After
constructing the maps by vertical and diagonal search, for
each pixel the disparity and the SAD value are compared
with the 8 neighboring SAD values, where neighborhood is
defined by the black pixels in the windows shown in Fig. 3,
which are combined into one mask by taking the current

Figure 5. Original image (top left), disparity
map before (top right) and after (bottom left)
synchronization, and final disparity map (bot-
tom right) of desk image pair. Shown is the
left image only.

pixel as the center of each window. The window size has to
be the same as the one of the symmetric mean filter. If one
of the 8 pixels in the map has a better SAD value, that one
is used instead of the original one. This makes sense since
the current pixel is apparently one belonging to the edge of
an object, because this pixel was used at the border of the
window for computing the symmetric mean of the chosen
neighbor.

Figure 4 shows the complete process of computing con-
sistent disparity maps. An additional speed-up can be
gained by using Gaussian pyramids in the following way:
Instead of computing the disparity maps at the finest reso-
lution, we compute a pyramid and the maps at the coars-
est resolution. Subsequently these maps can be scaled to
the original resolution by a Gaussian filter. This results
in disparity maps having less quality, but the speed up is
enormous: When using a pyramid with just two levels, the
speed up is a factor of 8, when using three levels the factor
is 64. This results from the size of the accumulator, which is
halved in each dimension at each additional pyramid level.

3. Experiments

For implementation we used the Intel Image Processing
Library IPL [10] and Intel OpenCV Library [11] because
of their optimized routines. Figure 5 shows a sequence of
processing steps, starting from an original image pair cre-
ated by Povray. Large disparities are encoded as light gray-
values, small disparities as dark gray-values; black pixels
are undefined. In Fig. 5 top right the disparity map be-
fore synchronization of both maps is shown. It can be seen
that this map was computed very reliable at locations where
correspondences could be actually established. However,
regions that were occluded in one of the images result in
obviously wrong disparities. Synchronization with a toler-
ance of dtol = 0 results in the map shown at the bottom left.
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Figure 4. Data-flow for computing consistent disparity maps for the left and right image.

Parameter desk head tree roff1 roff2
Image Size 384×288 384×288 256×233 720×576 720×576
Pyramid Levels 1 1 1 1 2
Disparity Range 12–59 0–15 0–7 28–75 14–37
No. Disparity Layers 48 16 8 48 24
Size of Correlation Window 5×5 3×3 3×3 7×7 3×3
Tolerance Value dtol 0 1 0 0 0
Size of Median 5×5 5×5 5×5 5×5 3×3
No. of Closing Operations 5 3 1 5 2

Table 1. Parameter values for disparity computation.

The wrong disparities are now undefined, resulting in many
small gaps. As shown in the final map in Fig. 5 bottom right,
those gaps were filled after applying a Median filter of size
5 × 5 in a post-processing step. In addition to the Median
we used a closing operator, consisting of a dilation which
was applied 5 times followed by 5 erosions. Mask size was
3× 3 in both cases. The parameters used for computing the
disparity maps can be found in Table 1, computation times
in Table 2. In addition to the artificial Povray image pair

Disparity Comp. desk head tree roff1 roff2
RGB → Gray 2 2 1 7 9
Accumulator Comp. 91 32 17 342 44
Vert.+Diag. Search 98 41 11 396 51
Asymmetric Corr. 24 26 15 87 23
Synchronization 1 2 1 9 2
Post-Processing 11 10 6 42 9
Pyramid Comp. — — — — 17
Total 227 113 51 883 155

Table 2. Disparity computation times in msec
on a Linux-PC with Intel Pentium 4, 1.9 GHz.

deskwe give the parameters and computation times for the
stereo reference image pairs head [17] and tree [4]. Dis-
parity maps for head and tree are shown in Fig. 6. The
roffice image pair [2] was taken by a hand-held cam-
era (not stereo) at our institute. Calibration information was
obtained by a structure from motion approach [9]. Figure 7
(top) shows the rectified image pair. The columns in Table
1 and 2 denoted by roff1 and roff2 refer both to the
image pair roffice. The difference is that for roff2 we
applied a two level pyramid algorithm as described in the
previous section. Computed disparity maps for the param-
eters roff1 are shown in Fig. 7 (middle). The application
of the Gaussian pyramid gives a slightly coarser resolution
of the maps, but results in a speed up factor of 5–6.

Since our goal is to apply the computed disparity maps in
Augmented Reality, we transformed them into depth buffer
entries that can be used directly by OpenGL-Hardware. The
result of augmenting the roffice scene with four objects
using the disparity maps from Fig. 7 (middle) is shown in

Figure 6. Left image and disparity map of
head (top) and tree (bottom), parallel stereo
configuration.

Fig. 7 (bottom). The occlusion of virtual objects by ele-
ments of the real scene is fairly good, especially if you look
at the edges of the objects.

4. Conclusion

We proposed a method for computing dense disparity
maps for two rectified images obtained by a stereo cam-
era. The edges of objects are maintained and we are able to
compute the maps for smaller image sizes almost in real-
time. Disparities are obtained using a method based on
the concept of a similarity accumulator. The basic prin-
ciple is an area-based matching using the sum of abso-
lute differences which can be accelerated considerably by
a three-dimensional accumulator, because the differences
between the same pixels have to be computed only once.
Since we use rectified images only horizontal disparities
have to be considered. To get the disparities we compute
(dmax − dmin + 1) difference images obtained by displacing



Figure 7. roffice image pair, taken by
a hand-held camera. Top: rectified im-
ages. Middle: Disparity maps for parameters
roff1. Bottom: Augmented scene

the two images horizontally by d = dmin, . . . , dmax pix-
els followed by pixel wise computation of absolute differ-
ences. These difference images are mean-filtered using a
small mask; the result is used as the entries of the cells of
the three-dimensional similarity accumulator.

A special method for accessing the accumulator cells al-
lows us to compute two disparity maps, one for each stereo
image. An asymmetric correction step is performed on the
maps in order to get an update from a symmetric to an asym-
metric block-matching that maintains object edges in the
disparity maps.

Since occlusions lead to correspondence-less areas in the
images, the two maps are synchronized, i. e. one pixel in the
left image may only correspond to one pixel in the right im-
age and vice versa. This enables us to localize wrong cor-
respondences and to extract object edges exactly, since usu-
ally occlusions are caused at these edges which often lead
to wrong disparities. The resulting maps are post-processed
using a Median filter and a morphological closing operator.

The quality of the maps was evaluated using rendered
and real stereo images. Computation time mainly depends
on the resolution and the disparity range and was about
100–200 milliseconds for image pairs having a resolution
of 384× 288.

The method can be accelerated by using a resolution
pyramid, since a bisection of the image size in both dimen-
sions reduces the volume of the similarity accumulator and
thus computation time by 1/8.
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